

#### **ASX ANNOUNCEMENT**

30 October 2023

# Roe Hills Project, Eastern Goldfields WA

# Thick sequences of rare earths discovered in Roe Hills drilling

Lithium-bearing pegmatites and thick zones of rare earth elements encountered during ongoing reconnaissance RC drilling

#### **Highlights**

- Significant Rare Earth Element (REE) discovery at Black Cat Prospect close to Kalgoorlie, confirmed in drilling at Roe Hills with <50% sample results returned
- Excellent initial intercepts from only 9 holes returned to date, widths of between 16m to 148m wide with grades 800ppm to 6000ppm TREO
- NdPr ratios average 26% of the TREO values, high-value NdPr and 'magnet REEs' well represented and higher than peer group projects
- Black Cat REE discovery is blind at surface and associated with buried syenogranites, drilling extended to cover larger area
- Lithium-bearing pegmatites with LCT signatures intersected at Crystal Palace with best lithium result of 3m @ 0.41% Li<sub>2</sub>O from 87m in the vicinity of spodumene-bearing pegmatite surface sample that returned 1.67% Li<sub>2</sub>O
- 77 drill holes completed for 10,100m with a further 6 holes to complete, exploration to look at gravity surveying to map out buried intrusives for future targeting of what is thought to be a very large REE system
- Significant widths of rare earth elements mineralisation associated with weathered syenite and monzonite intrusions encountered at Black Cat

#### **Significant Results**

#### **Black Cat - Rare Earths**

- **40m @ 2104ppm (0.21%) TREO** from 36m incl **8m @ 6023ppm (0.60%) TREO** from 40m (RHRC158)
- **78m @ 1255ppm (0.13%) TREO** from 52m incl **32m @ 2212ppm (0.22%) TREO** from 56m (RHRC136)



- **16m @ 1428ppm (0.14%) TREO** from 52m (RHRC135)
- **148m @ 821ppm (0.08%) TREO** from 36m incl **40m @ 1551ppm (0.16%) TREO** from 36m (RHRC138)

#### <u>Crystal Palace – Lithium</u>

- **3m @ 0.41% Li<sub>2</sub>O** from 87m incl **1m @ 0.67% Li<sub>2</sub>O** from 88m (RHRC168)
- **2m @ 0.33% Li<sub>2</sub>O** from 37m (RHRC167)
- **3m @ 0.23% Li<sub>2</sub>O** from 29m incl **1m @ 0.46% Li<sub>2</sub>O** from 30m (RHRC166)

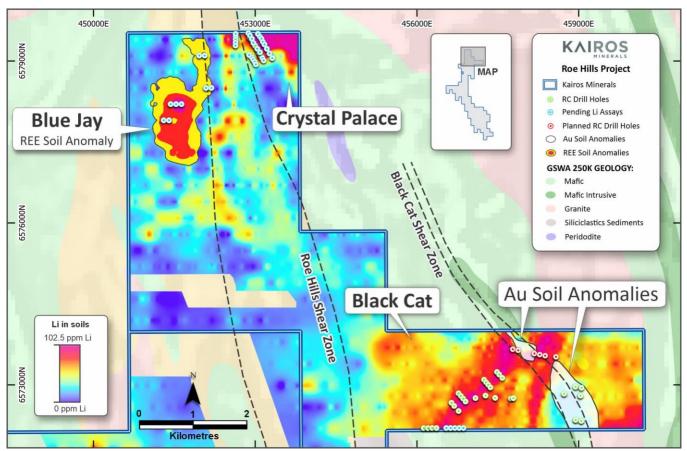
Kairos Managing Director, Dr Peter Turner said: "The wide rare earth element (REE) drill hits in the weathered profile at Black Cat appear to be associated with a phase of granite that we didn't expect prior to drilling but has now become a major rare earth target on Kalgoorlie's doorstep.

"We remain extremely positive about the REE grades and scale of the targets at Black Cat from the first few results and believe that this is a unique proposition in a very accessible area with excellent road and rail connections.

"The few lithium results that have been returned indicate narrow LCT pegmatites at Crystal Palace in the vicinity of a surface rock sample with visible spodumene that returned 1.67% Li<sub>2</sub>O.

"Whilst the Crystal Palace drilling has successfully hit pegmatites which we believe are the extension of the Manna system, we will now look to future exploration to try to test for potential extensions to the west where the rocks are buried beneath thin transported cover.

"The Black Cat lithium soil anomaly was tested thoroughly in the south – whilst we welcome the rare earth discovery there, the lack of lithium remains a mystery. Drilling continues to the north at Black Cat targeting pegmatites and rare earths with first results from Blue Jay, and further results from Black Cat and Crystal Palace expected over the coming weeks".


Kairos Minerals Ltd (**ASX: KAI**) is pleased to report drilling and assay results from its 100% owned Roe Hills project 110km east of Kalgoorlie.

Kairos has completed 77 of a planned 83 RC drillholes to test high priority lithium, rare earth element and gold targets at the Black Cat, Crystal Palace and Blue Jay prospects (**Figure 1**).



To date 10,100m of drilling has been completed at Black Cat and Crystal Palace with an additional planned 1,104m of drilling remaining to be completed on the northern side of the Black Cat Prospect (**Figure 1**). Total drilling is expected to be **11,204m from 83 holes** and completed before 31 October 2023. Kairos originally planned 7,000m of RC at all prospects but extended the programme because of highly encouraging geological observations during an early part of the programme.

The drilling is reconnaissance in nature and forms part of a broad exploration program testing targets generated from soil geochemistry, structural interpretations and mapping.



**Figure 1**: Roe Hills North showing RC drill collars drilled and remaining on a background image of lithium soil values (Blue Jay area shows the extent of the REE soil anomaly).

#### **Black Cat**

Drilling at Black Cat has identified significant intercepts of rare earth elements (REE) hosted in clays and weathered rock immediately overlying previously unknown, blind syenite and monzonite intrusions. Drilling into fresh rock shows highly elevated REE values within the syenite and monzonite intrusions with zones of significant REE enrichment up to 40m thick in the saprolite clays overlying the intrusive bodies. High-grade results from the enriched clay and regolith hosted zones include **8m @ 6028ppm TREO** from 40m (RHRC158), **32m @ 2212ppm TREO** from 56m (RHRC136) and **40m @ 1551ppm TREO** from 36m (RHRC138), all



part of much wider intercepts that include the enriched but lower grade fresh rock material below (**Figures 2 & 3**). Due to these exciting REE results an additional 5 drillholes were added to the program at Black Cat to test for both REE and lithium mineralisation. Available REE results are reported in **Table 2**. The majority of REE results for Black Cat are pending (**Table 4**). Results of Rare Earth Oxides (REO) >250ppm REOs are shown for all drilling in **Table 5**.

It must be noted that the REE mineralisation at Black Cat is considered open in all directions and is considered a very large target with excellent road and rail infrastructure to the project from Kalgoorlie (**Figure 5**). Ground geophysics (gravity) will likely be used in future to assist in targeting buried intrusives.

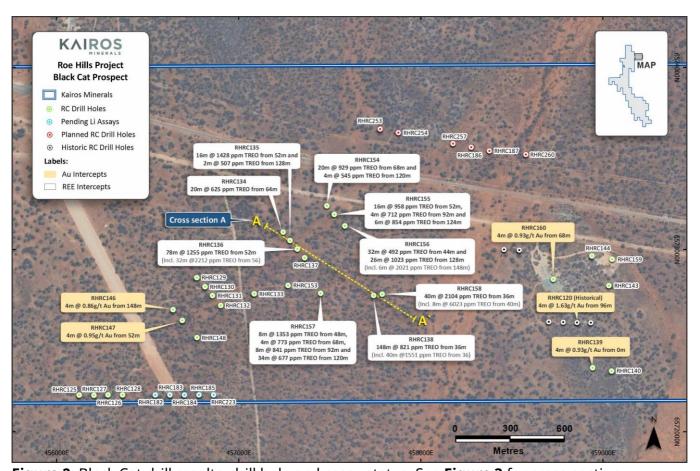



Figure 2: Black Cat drill results, drill hole and assay status. See Figure 3 for cross-section.

All drillholes completed at Black Cat had samples submitted for lithium-suite elements and gold, however only <u>9 holes</u> (from 28) were initially selected for REE analysis, all of which have returned significant REE results. The distribution of REE mineralisation appears significantly more widespread and higher-grade than anticipated, with many of the holes that were not originally analysed for the full REE suite returning highly elevated combined values of cerium, lanthanum, yttrium and scandium indicating the high potential for further significant REE mineralisation. This has prompted Kairos to request further REE analysis from the samples submitted from the remaining drillholes. REE results for these samples are pending.



Additionally (and importantly), all rare earth element results are generated from a sample dissolution method called '4-acid digest' at Intertek Laboratory in Maddington, Perth. 4-acid digest is considered a **partial digest** of the sample, meaning that there is likely to be elements (especially rare earths) that are not totally dissolved into solution prior to analysis. Therefore the analytical result is likely to underestimate the total REE present. Kairos has chosen this method of sample preparation for a total elemental suite because it is significantly cheaper than a **total digest** method like <u>fusion</u>. Kairos will request that anomalous results obtained using the 4-acid method will be resubmitted for a total digest method to give a higher quality and more accurate total result. <u>The reality is that the results quoted in this release are likely to increase when a total digest method is used.</u>

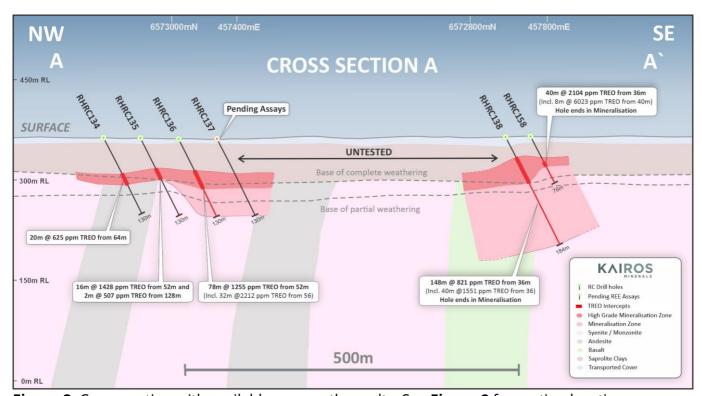



Figure 3: Cross-section with available rare earth results. See Figure 2 for section location.

Drilling at Black Cat was originally planned to test a 2.8km lithium-in-soils anomaly (**Figure 1**) for the presence of lithium-bearing pegmatites, however, no pegmatites have been observed in the drilling at Black Cat to date. It is assumed that the lithium anomaly is related to the syenite and monzonite intrusions that have been identified in the drilling and appear to be related to the nearby Cardunia Syenogranite although on-going investigation into the surface lithium anomalism continues.

Several drill holes have yet to be drilled into the northern part of the lithium soil anomaly and any pegmatite observations will be reported in future releases along with laboratory results.



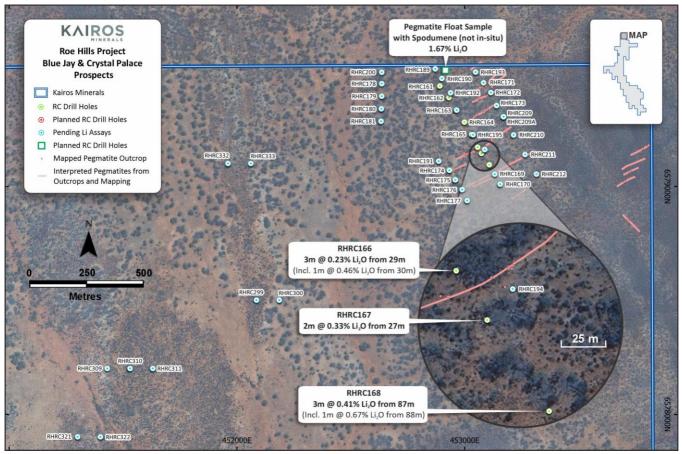



Figure 4. Crystal Palace drill results, drill hole and assay status.



| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | LREO<br>(ppm) | HREO<br>(ppm) | Mag<br>REO<br>(ppm) | Nd + Pr<br>REO<br>(ppm) | Description                    |
|---------|-------------|-----------|-----------------|---------------|---------------|---------------|---------------------|-------------------------|--------------------------------|
| RHRC134 | 64          | 84        | 20              | 625           | 517           | 102           | 247                 | 189                     | Weathered monzonite            |
| RHRC135 | 52          | 68        | 16              | 1428          | 1266          | 155           | 450                 | 359                     | Clays over monzonite           |
| RHRC135 | 128         | 130       | 2               | 507           | 467           | 38            | 149                 | 122                     | Fresh monzonite                |
| RHRC136 | 52          | 130       | 78              | 1255          | 1125          | 122           | 436                 | 355                     | Clays into monzonite           |
| incl    | 56          | 88        | 32              | 2212          | 1970          | 230           | 830                 | 676                     | Clays into weathered monzonite |
| RHRC138 | 36          | 184       | 148             | 821           | 750           | 56            | 231                 | 194                     | Clays into monzonite           |
| incl    | 36          | 76        | 40              | 1551          | 1413          | 104           | 440                 | 372                     | Clays over monzonite           |
| RHRC154 | 68          | 88        | 20              | 929           | 844           | 82            | 278                 | 223                     | Weathered syenite              |
| RHRC154 | 120         | 124       | 4               | 545           | 649           | 79            | 229                 | 179                     | Fresh monzonite                |
| RHRC155 | 52          | 68        | 16              | 958           | 845           | 110           | 308                 | 239                     | Weathered syenite              |
| RHRC155 | 92          | 96        | 4               | 712           | 672           | 39            | 210                 | 178                     | Fresh syenite                  |
| RHRC155 | 124         | 130       | 6               | 854           | 774           | 77            | 254                 | 203                     | Fresh syenite                  |
| RHRC156 | 44          | 76        | 32              | 492           | 439           | 49            | 146                 | 116                     | Clays into syenite             |
| RHRC156 | 128         | 154       | 26              | 1023          | 904           | 104           | 299                 | 235                     | Fresh syenite and mafic        |
| incl    | 148         | 154       | 6               | 2021          | 1828          | 189           | 612                 | 483                     | Fresh syenite                  |
| RHRC157 | 48          | 56        | 8               | 1353          | 1207          | 118           | 316                 | 260                     | Clays                          |
| RHRC157 | 68          | 72        | 4               | 773           | 714           | 38            | 190                 | 166                     | Weathered intermediate         |
| RHRC157 | 92          | 100       | 8               | 841           | 766           | 58            | 227                 | 189                     | Intermediate and syenite       |
| RHRC157 | 120         | 154       | 34              | 677           | 611           | 44            | 185                 | 156                     | Intermediate and syenite       |
| RHRC158 | 36          | 76        | 40              | 2104          | 1851          | 227           | 779                 | 649                     | Clays into syenite             |
| incl    | 40          | 48        | 8               | 6023          | 5314          | 659           | 2453                | 2052                    | Clays                          |

Table 2. Significant drill intercepts for REE's at Black Cat >500ppm TREO

Notes:

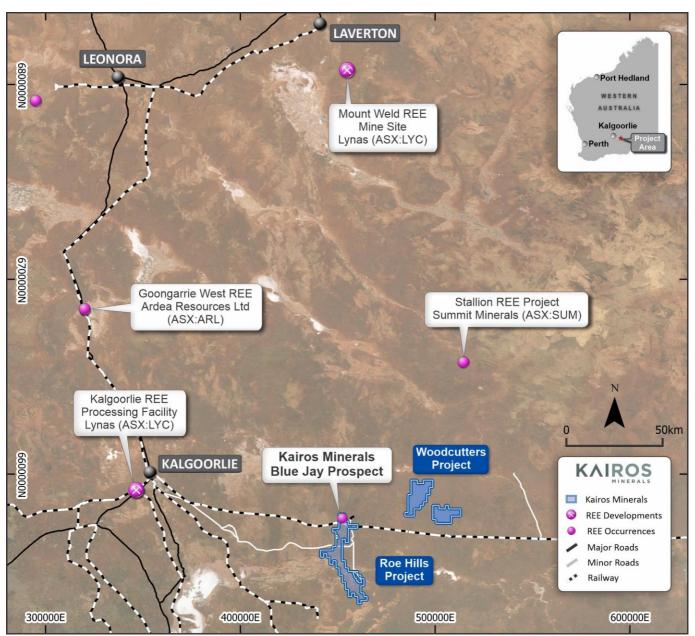
 $\mathsf{TREO} = \mathsf{CeO}_2 + \mathsf{Dy}_2\mathsf{O}_3 + \mathsf{Er}_2\mathsf{O}_3 + \mathsf{Eu}_2\mathsf{O}_3 + \mathsf{Gd}_2\mathsf{O}_3 + \mathsf{Ho}_2\mathsf{O}_3 + \mathsf{La}_2\mathsf{O}_3 + \mathsf{La}_2\mathsf{O}_3 + \mathsf{Nd}_2\mathsf{O}_3 + \mathsf{Pr}_6\mathsf{O}_{11} + \mathsf{Sc}_2\mathsf{O}_3 + \mathsf{Sm}_2\mathsf{O}_3 + \mathsf{Tb}_4\mathsf{O}_7 + \mathsf{Tm}_2\mathsf{O}_3 + \mathsf{Y}_2\mathsf{O}_3 + \mathsf{Yb}_2\mathsf{O}_3 + \mathsf{Va}_2\mathsf{O}_3 + \mathsf{Va}$ 

LREO =  $CeO_2 + Eu_2O_3 + La_2O_3 + Nd_2O_3 + Pr_6O_{11} + Sm_2O_3$ 

 $HREO = Dy_2O_3 + Er_2O_3 + Gd_2O_3 + Ho_2O_3 + Lu_2O_3 + Tb_4O_7 + Tm_2O_3 + Y_2O_3 + Yb_2O_3$ 

Mag REO =  $Dy_2O_3 + Nd_2O_3 + Pr_6O_{11} + Tb_4O_7$ 

#### **Black Cat Gold**


Drilling for gold mineralisation at Black Cat returned intercepts of 4m @ 0.98g/t Au from 0m (RHRC139) and 4m @ 0.93g/t Au from 68m (RHRC160). These results are along-strike of gold mineralisation encountered in previous drilling in 2021 (4m @ 1.63g/t Au from 96m)<sup>1</sup> (**Figure 1**). Additional holes to the north of Black Cat targeting gold and lithium are due to finish in coming days concluding the Roe Hills reconnaissance drilling and are planned to intersect this gold trend approximately 800m to the north west.

<sup>&</sup>lt;sup>1</sup> See KAI ASX announcement dated 13 July 2021 entitled 'Wide shallow gold zones at Roe Hills highlight potential to delineate oxide resources in active mining region'



| Hole ID | From | То  | Interval<br>(m) | Au<br>(g/t) | Description                                        |
|---------|------|-----|-----------------|-------------|----------------------------------------------------|
| RHRC139 | 0    | 4   | 4               | 0.98        | Weathered basalt with 5% quartz veining            |
| RHRC146 | 148  | 152 | 4               | 0.86        | Altered andesite                                   |
| RHRC147 | 52   | 56  | 4               | 0.95        | Pale saprolite clay                                |
| RHRC160 | 68   | 72  | 4               | 0.93        | Contact between shale and basalt. Minor pyrrhotite |

Table 3. Significant assay results received for gold at Black Cat >0.3g/t Au



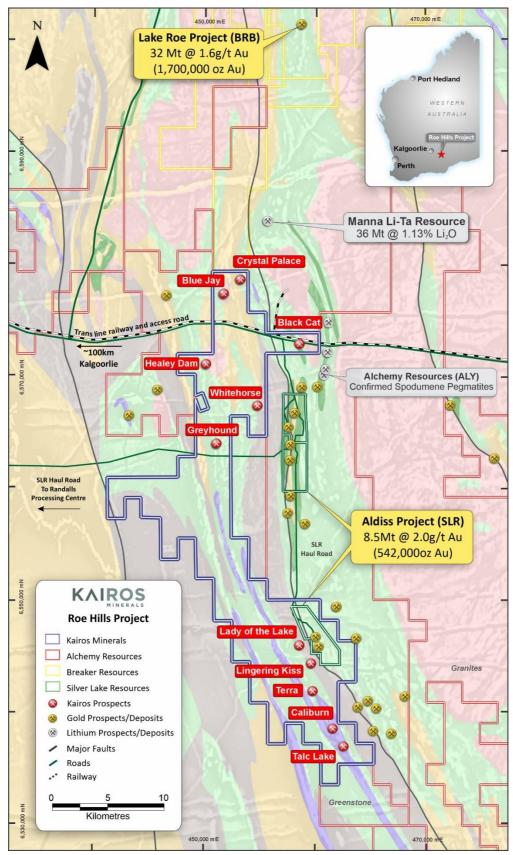
**Figure 5.** Location of the Roe Hills project in relation to infrastructure and other known REE deposits, occurrences and process facilities.



#### **Crystal Palace**

Drilling at Crystal Palace was designed to test lithium soil anomalies and pegmatites mapped from sub-crop at surface. Drilling intersected several sub-vertical lithium-bearing pegmatites, with lepidiolite micas confirming Lithium-Tantalum-Caesium (LCT) fertility. Assay results include **3m** @ **0.41%** Li<sub>2</sub>O from 87m including **1m** @ **0.67%** Li<sub>2</sub>O from 88m (RHRC168) and **3m** @ **0.23%** Li<sub>2</sub>O from 29m including **1m** @ **0.46%** Li<sub>2</sub>O from 30m (RHRC166) (**Figure 2**). Mineralogical XRD analysis was undertaken on selected samples which confirmed the presence of lepidiolite and gives confidence that the project area is within a fertile zone for LCT pegmatites. An additional 5 drillholes were planned along the interpreted strike of the pegmatites intersected in order to test for changes in thickness and mineralogy. Results of the additional holes are pending.

During the drilling program a sample of pegmatite float material was discovered close to one of the planned drillhole traverses. The sample contained spodumene and was submitted for analysis which returned a value of 1.67% Li<sub>2</sub>O. While this sample was not in its original location it still gives Kairos confidence that spodumene-bearing pegmatites occur in the Crystal Palace area which is 5km along-strike to the southwest of the Manna lithium deposit (ASX: GL1).


| Hole ID | From (m) | To (m) | Interval (m) | Li <sub>2</sub> O (%) | Description                            |
|---------|----------|--------|--------------|-----------------------|----------------------------------------|
| RHRC166 | 29       | 32     | 3            | 0.23                  | Lepidolite-bearing pegmatite in basalt |
| inc     | 30       | 31     | 1            | 0.46                  | Up to 40% lepidolite in pegmatite      |
| RHRC167 | 37       | 39     | 2            | 0.33                  | Pegmatite in basalt                    |
| RHRC168 | 87       | 90     | 3            | 0.41                  | Pegmatite in basalt                    |
| inc     | 88       | 89     | 1            | 0.67                  | Pegmatite in basalt                    |

**Table 1.** Significant drill intercepts for lithium at Crystal Palace >0.1% Li<sub>2</sub>O

#### **Next Steps**

- Complete the final 6 holes at Black Cat North (REE + Li + Au) to conclude the Roe Hills reconnaissance RC drilling programme
- Analyse all drill results in order to vector towards potential lithium mineralisation at Crystal Palace, REE mineralization at Black Cat and Blue Jay
- Map out the distribution of syenite and monzontite intrusions for REE mineralisation targeting
- Consider gravity surveying at Black Cat and Blue Jay areas to map subsurface intrusions and fault zones
- Continue field mapping and sampling exercises on the southern part of the Roe Hills tenement package





**Figure 6:** Kairos' tenements in relation to neighbouring companies over the Roe Hills area overlain on a magnetic image highlighting interpreted granites. Lithium mines and advanced projects with resources are shown with quoted mineral resources.



|         |              |                |         |          |     |                   |                  |                   |                   |                | MIN          |
|---------|--------------|----------------|---------|----------|-----|-------------------|------------------|-------------------|-------------------|----------------|--------------|
| Hole ID | Hole<br>Type | Prospect       | Easting | Northing | RL  | Azimuth (degrees) | Dip<br>(degrees) | Hole<br>Depth (m) | Lithium<br>Assays | Gold<br>Assays | REE Assays   |
|         |              |                |         |          |     |                   |                  | •                 |                   |                |              |
| RHRC125 | RC           | Black Cat      | 456122  | 6572199  | 345 | 90                | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC126 | RC           | Black Cat      | 456203  | 6572198  | 346 | 90                | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC127 | RC           | Black Cat      | 456280  | 6572200  | 346 | 90                | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC128 | RC           | Black Cat      | 456360  | 6572200  | 347 | 90                | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC129 | RC           | Black Cat      | 456768  | 6572844  | 356 | 140               | -60              | 142               | NSI               | NSI            | Pending      |
| RHRC130 | RC           | Black Cat      | 456813  | 6572794  | 357 | 140               | -60              | 142               | NSI               | NSI            | Pending      |
| RHRC131 | RC           | Black Cat      | 456854  | 6572745  | 356 | 140               | -60              | 142               | NSI               | NSI            | Pending      |
| RHRC132 | RC           | Black Cat      | 456899  | 6572691  | 355 | 140               | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC133 | RC           | Black Cat      | 457083  | 6572755  | 357 | 320               | -60              | 184               | NSI               | NSI            | Pending      |
| RHRC134 | RC           | Black Cat      | 457242  | 6573094  | 359 | 140               | -60              | 130               | NSI               | NSI            | Reported     |
| RHRC135 | RC           | Black Cat      | 457280  | 6573048  | 359 | 140               | -60              | 130               | NSI               | NSI            | Reported     |
| RHRC136 | RC           | Black Cat      | 457320  | 6573001  | 357 | 140               | -60              | 130               | NSI               | NSI            | Reported     |
| RHRC137 | RC           | Black Cat      | 457360  | 6572953  | 357 | 140               | -60              | 130               | NSI               | NSI            | Pending      |
| RHRC138 | RC           | Black Cat      | 457739  | 6572746  | 360 | 90                | -60              | 184               | NSI               | NSI            | Reported     |
| RHRC139 | RC           | Black Cat Gold | 458942  | 6572349  | 372 | 90                | -60              | 214               | NSI               | Reported       | Not analysed |
| RHRC140 | RC           | Black Cat Gold | 459046  | 6572331  | 369 | 90                | -60              | 166               | NSI               | NSI            | Not analysed |
| RHRC143 | RC           | Black Cat Gold | 459031  | 6572800  | 367 | 90                | -60              | 166               | NSI               | NSI            | Not analysed |
| RHRC144 | RC           | Black Cat Gold | 458938  | 6572963  | 366 | 90                | -60              | 166               | NSI               | NSI            | Not analysed |
| RHRC146 | RC           | Black Cat      | 456637  | 6572668  | 355 | 140               | -60              | 154               | NSI               | Reported       | Pending      |
| RHRC147 | RC           | Black Cat      | 456688  | 6572609  | 355 | 140               | -60              | 154               | NSI               | Reported       | Pending      |
| RHRC148 | RC           | Black Cat      | 456769  | 6572515  | 354 | 140               | -60              | 154               | NSI               | NSI            | Pending      |
| RHRC153 | RC           | Black Cat      | 457269  | 6572801  | 360 | 320               | -60              | 214               | NSI               | NSI            | Pending      |
| RHRC154 | RC           | Black Cat      | 457482  | 6573238  | 360 | 140               | -60              | 124               | NSI               | NSI            | Reported     |
| RHRC155 | RC           | Black Cat      | 457523  | 6573191  | 360 | 140               | -60              | 130               | NSI               | NSI            | Reported     |
| RHRC156 | RC           | Black Cat      | 457581  | 6573128  | 361 | 320               | -60              | 154               | NSI               | NSI            | Reported     |
| RHRC157 | RC           | Black Cat      | 457448  | 6572758  | 358 | 140               | -60              | 154               | NSI               | NSI            | Reported     |
| RHRC158 | RC           | Black Cat      | 457786  | 6572753  | 359 | 90                | -60              | 76                | NSI               | NSI            | Reported     |



|         |              |                |         |          |     |                   |                  |                   |                   |                | MII          |
|---------|--------------|----------------|---------|----------|-----|-------------------|------------------|-------------------|-------------------|----------------|--------------|
| Hole ID | Hole<br>Type | Prospect       | Easting | Northing | RL  | Azimuth (degrees) | Dip<br>(degrees) | Hole<br>Depth (m) | Lithium<br>Assays | Gold<br>Assays | REE Assays   |
| RHRC159 | RC           | Black Cat Gold | 459049  | 6572945  | 363 | 90                | -60              | 214               | NSI               | NSI            | Not analysed |
| RHRC160 | RC           | Black Cat Gold | 458726  | 6572835  | 358 | 90                | -60              | 214               | NSI               | Reported       | Not analysed |
| RHRC161 | RC           | Crystal Palace | 452890  | 6579440  | 405 | 330               | -60              | 130               | NSI               | NSI            | Not analysed |
| RHRC162 | RC           | Crystal Palace | 452930  | 6579389  | 403 | 330               | -60              | 106               | NSI               | NSI            | Not analysed |
| RHRC163 | RC           | Crystal Palace | 452964  | 6579334  | 404 | 150               | -55              | 130               | Pending           | Pending        | Not analysed |
| RHRC164 | RC           | Crystal Palace | 452998  | 6579281  | 404 | 150               | -60              | 136               | NSI               | NSI            | Not analysed |
| RHRC165 | RC           | Crystal Palace | 453029  | 6579227  | 418 | 150               | -60              | 130               | NSI               | NSI            | Not analysed |
| RHRC166 | RC           | Crystal Palace | 453056  | 6579171  | 418 | 150               | -60              | 124               | Reported          | NSI            | Not analysed |
| RHRC167 | RC           | Crystal Palace | 453073  | 6579144  | 416 | 330               | -60              | 106               | Reported          | NSI            | Not analysed |
| RHRC168 | RC           | Crystal Palace | 453107  | 6579094  | 415 | 150               | -60              | 106               | Reported          | NSI            | Not analysed |
| RHRC169 | RC           | Crystal Palace | 453131  | 6579053  | 405 | 150               | -60              | 112               | Pending           | Pending        | Not analysed |
| RHRC170 | RC           | Crystal Palace | 453155  | 6579009  | 405 | 150               | -60              | 136               | Pending           | Pending        | Not analysed |
| RHRC171 | RC           | Crystal Palace | 453082  | 6579454  | 407 | 150               | -55              | 112               | Pending           | Pending        | Not analysed |
| RHRC172 | RC           | Crystal Palace | 453114  | 6579411  | 412 | 150               | -55              | 130               | Pending           | Pending        | Not analysed |
| RHRC173 | RC           | Crystal Palace | 453139  | 6579354  | 414 | 150               | -55              | 130               | Pending           | Pending        | Not analysed |
| RHRC174 | RC           | Crystal Palace | 452932  | 6579070  | 403 | 150               | -55              | 106               | Pending           | Pending        | Not analysed |
| RHRC175 | RC           | Crystal Palace | 452958  | 6579028  | 421 | 150               | -55              | 106               | Pending           | Pending        | Not analysed |
| RHRC176 | RC           | Crystal Palace | 452988  | 6578985  | 410 | 150               | -55              | 106               | Pending           | Pending        | Not analysed |
| RHRC177 | RC           | Crystal Palace | 453010  | 6578937  | 403 | 150               | -55              | 142               | Pending           | Pending        | Not analysed |
| RHRC178 | RC           | Crystal Palace | 452635  | 6579450  | 401 | 180               | -55              | 124               | Pending           | Pending        | Not analysed |
| RHRC179 | RC           | Crystal Palace | 452635  | 6579395  | 400 | 180               | -55              | 124               | Pending           | Pending        | Not analysed |
| RHRC180 | RC           | Crystal Palace | 452633  | 6579340  | 399 | 180               | -55              | 124               | Pending           | Pending        | Not analysed |
| RHRC181 | RC           | Crystal Palace | 452632  | 6579285  | 399 | 180               | -55              | 124               | Pending           | Pending        | Not analysed |
| RHRC189 | RC           | Crystal Palace | 452870  | 6579515  | 404 | 150               | -60              | 130               | Pending           | Pending        | Not analysed |
| RHRC190 | RC           | Crystal Palace | 452899  | 6579473  | 403 | 150               | -60              | 148               | Pending           | Pending        | Not analysed |
| RHRC192 | RC           | Crystal Palace | 452937  | 6579410  | 404 | 150               | -60              | 166               | Pending           | Pending        | Not analysed |
| RHRC193 | RC           | Crystal Palace | 453047  | 6579501  | 405 | 150               | -55              | 130               | Pending           | Pending        | Not analysed |



| Hole ID  | Hole<br>Type | Prospect       | Easting | Northing | RL  | Azimuth (degrees) | Dip<br>(degrees) | Hole<br>Depth (m) | Lithium<br>Assays | Gold<br>Assays | REE Assays   |
|----------|--------------|----------------|---------|----------|-----|-------------------|------------------|-------------------|-------------------|----------------|--------------|
| RHRC194  | RC           | Crystal Palace | 453087  | 6579161  | 406 | 150               | -60              | 154               | Pending           | Pending        | Not analysed |
| RHRC195  | RC           | Crystal Palace | 453036  | 6579226  | 418 | 150               | -55              | 160               | Pending           | Pending        | Not analysed |
| RHRC200  | RC           | Crystal Palace | 452635  | 6579500  | 403 | 180               | -55              | 124               | Pending           | Pending        | Not analysed |
| RHRC209  | RC           | Crystal Palace | 453168  | 6579305  | 410 | 150               | -60              | 22                | Pending           | Pending        | Not analysed |
| RHRC209A | RC           | Crystal Palace | 453170  | 6579305  | 410 | 150               | -55              | 172               | Pending           | Pending        | Not analysed |
| RHRC210  | RC           | Crystal Palace | 453214  | 6579225  | 409 | 150               | -55              | 178               | Pending           | Pending        | Not analysed |
| RHRC211  | RC           | Crystal Palace | 453264  | 6579139  | 406 | 150               | -55              | 166               | Pending           | Pending        | Not analysed |
| RHRC212  | RC           | Crystal Palace | 453314  | 6579053  | 407 | 150               | -55              | 184               | Pending           | Pending        | Not analysed |

 Table 4: Drillhole information. NSI = No Significant Intercepts

| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | La2O3<br>(ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| RHRC134 | 56          | 60        | 4               | 268           | 103.6          | 2.9            | 1.5            | 2.1            | 5.1            | 0.5            | 45.5           | 0.2            | 62.6           | 16.2            | 1.2            | 9.8            | 0.6            | 0.2            | 14            | 1.5            |
| RHRC134 | 60          | 64        | 4               | 263           | 105.1          | 3.5            | 1.8            | 2.2            | 5.4            | 0.6            | 40.8           | 0.3            | 60.4           | 15.4            | 1.4            | 10.1           | 0.7            | 0.3            | 13.6          | 1.8            |
| RHRC134 | 64          | 68        | 4               | 803           | 203.2          | 12.2           | 5.8            | 8.3            | 23.2           | 2.1            | 164            | 0.6            | 217.1          | 53.7            | 1.4            | 35.3           | 2.6            | 0.8            | 67.8          | 4.6            |
| RHRC134 | 72          | 76        | 4               | 703           | 252.7          | 9.8            | 4.8            | 6              | 17.6           | 1.7            | 126            | 0.6            | 155.1          | 38.2            | 1.2            | 25.5           | 2              | 0.7            | 57.1          | 3.8            |
| RHRC134 | 76          | 80        | 4               | 521           | 149.9          | 11.4           | 5.4            | 6.6            | 19.5           | 2              | 74.7           | 0.5            | 128.2          | 30              | 11.4           | 25.3           | 2.3            | 0.6            | 48.8          | 3.8            |
| RHRC134 | 80          | 84        | 4               | 886           | 263.8          | 12.7           | 6.2            | 7.4            | 22.2           | 2.2            | 193.1          | 0.7            | 196            | 51.6            | 14.1           | 30.8           | 2.6            | 0.8            | 76.8          | 4.7            |
| RHRC134 | 84          | 88        | 4               | 292           | 111.8          | 3.3            | 1.6            | 1.9            | 5.3            | 0.5            | 58.6           | 0.2            | 49.3           | 13.8            | 18.3           | 7.9            | 0.7            | 0.2            | 17.5          | 1.3            |
| RHRC134 | 88          | 92        | 4               | 294           | 126.3          | 2.8            | 1.2            | 1.9            | 5.1            | 0.5            | 55.1           | 0.1            | 53.5           | 14.9            | 9.8            | 8              | 0.6            | 0.1            | 13.3          | 0.9            |
| RHRC134 | 92          | 96        | 4               | 336           | 146.3          | 3.1            | 1.3            | 2.3            | 6.4            | 0.5            | 60.5           | 0.1            | 65.6           | 18.4            | 5.1            | 10.1           | 0.7            | 0.2            | 14.6          | 1.1            |
| RHRC134 | 96          | 100       | 4               | 275           | 121.9          | 2.7            | 1.1            | 2.1            | 5.5            | 0.4            | 45.8           | 0.1            | 55.8           | 15.5            | 2.3            | 9              | 0.6            | 0.1            | 11.1          | 0.8            |
| RHRC134 | 100         | 104       | 4               | 256           | 112.3          | 2.4            | 1              | 1.8            | 4.8            | 0.4            | 50.3           | 0.1            | 48.4           | 13.4            | 1.7            | 7.9            | 0.5            | 0.1            | 10.7          | 0.8            |
| RHRC134 | 104         | 108       | 4               | 320           | 135            | 3.2            | 1.3            | 2.3            | 5.7            | 0.5            | 65.9           | 0.1            | 56.6           | 15.4            | 9.5            | 8.8            | 0.6            | 0.2            | 14.2          | 1              |
| RHRC134 | 124         | 128       | 4               | 428           | 189.4          | 3.5            | 1.3            | 2.7            | 7.3            | 0.5            | 90.6           | 0.1            | 77.5           | 22.4            | 2.3            | 12             | 0.7            | 0.2            | 16.5          | 0.9            |
| RHRC134 | 128         | 130       | 2               | 474           | 210.3          | 3.7            | 1.4            | 3              | 7.9            | 0.5            | 98.8           | 0.2            | 88.4           | 24.8            | 2.3            | 13             | 0.8            | 0.2            | 17.6          | 1.1            |



|         |             |           |                 | 1             |                |                |                |                |                |                |       |                |                |                 |                |                |                |                |               | MIN            |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | (ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
| RHRC135 | 36          | 40        | 4               | 261           | 171.2          | 4.6            | 3.2            | 0.7            | 2.7            | 1              | 4.9   | 0.4            | 6.6            | 1.6             | 32.1           | 2.3            | 0.6            | 0.5            | 25.8          | 3.1            |
| RHRC135 | 48          | 52        | 4               | 476           | 346.4          | 5.4            | 3.6            | 1.5            | 5              | 1.1            | 25.5  | 0.4            | 26.5           | 7.2             | 5.4            | 5.4            | 0.9            | 0.5            | 38            | 2.9            |
| RHRC135 | 52          | 56        | 4               | 2505          | 1168           | 19             | 7.9            | 14.4           | 36.6           | 3              | 478.9 | 0.7            | 459.4          | 135.6           | 9.2            | 67.6           | 4.1            | 0.9            | 94.5          | 5.6            |
| RHRC135 | 56          | 60        | 4               | 1297          | 585.8          | 12             | 5.5            | 7.7            | 21.2           | 2              | 262.7 | 0.6            | 221.5          | 64.3            | 6.1            | 34.7           | 2.5            | 0.7            | 65.5          | 3.9            |
| RHRC135 | 60          | 64        | 4               | 766           | 206.8          | 13             | 6.1            | 7.4            | 23.5           | 2.3            | 156.4 | 0.6            | 190.7          | 48.3            | 2.5            | 30.7           | 2.6            | 0.7            | 70.4          | 4              |
| RHRC135 | 64          | 68        | 4               | 1145          | 327            | 16.4           | 7.8            | 9              | 29.2           | 2.9            | 274   | 0.8            | 248.9          | 65.6            | 12.1           | 37.7           | 3.3            | 1              | 103.4         | 5.8            |
| RHRC135 | 72          | 76        | 4               | 379           | 160            | 4              | 1.9            | 2.4            | 7              | 0.7            | 70.7  | 0.2            | 69.9           | 19.5            | 6.4            | 10.3           | 0.8            | 0.2            | 23.8          | 1.4            |
| RHRC135 | 76          | 80        | 4               | 363           | 154.7          | 3.5            | 1.7            | 2.2            | 6.3            | 0.6            | 70.1  | 0.2            | 63.1           | 18              | 11.7           | 9.6            | 0.7            | 0.2            | 18.7          | 1.3            |
| RHRC135 | 80          | 84        | 4               | 347           | 154.4          | 2.9            | 1.3            | 2.1            | 5.7            | 0.5            | 69.6  | 0.2            | 63.5           | 18.7            | 2.1            | 9.5            | 0.6            | 0.2            | 15.2          | 1              |
| RHRC135 | 84          | 88        | 4               | 369           | 160.6          | 3.2            | 1.5            | 2.2            | 5.9            | 0.6            | 72.5  | 0.2            | 65.8           | 19.1            | 9              | 9.7            | 0.7            | 0.2            | 16.3          | 1.1            |
| RHRC135 | 88          | 92        | 4               | 265           | 109.6          | 2.5            | 1.2            | 1.4            | 3.8            | 0.5            | 53.1  | 0.1            | 43.1           | 12.6            | 16.3           | 5.9            | 0.4            | 0.2            | 12.9          | 1.1            |
| RHRC135 | 108         | 112       | 4               | 311           | 139.8          | 2.5            | 1.1            | 1.8            | 4.9            | 0.4            | 62.8  | 0.1            | 53.5           | 15.5            | 5.4            | 8              | 0.6            | 0.1            | 13            | 0.9            |
| RHRC135 | 112         | 116       | 4               | 291           | 134.3          | 1.8            | 0.8            | 1.4            | 3.6            | 0.3            | 62.2  | 0.1            | 49.7           | 14.9            | 7.4            | 6.5            | 0.4            | 0.1            | 7.2           | 0.5            |
| RHRC135 | 116         | 120       | 4               | 267           | 113.9          | 2              | 1.1            | 1.4            | 3.6            | 0.4            | 59.7  | 0.1            | 40.7           | 12.4            | 14.6           | 5.8            | 0.4            | 0.1            | 10.5          | 0.8            |
| RHRC135 | 120         | 124       | 4               | 423           | 181.4          | 3.4            | 1.5            | 2.3            | 6.3            | 0.6            | 93.3  | 0.2            | 70.4           | 20.5            | 12.7           | 10.4           | 0.7            | 0.2            | 17.6          | 1.3            |
| RHRC135 | 124         | 128       | 4               | 429           | 185.3          | 3.5            | 1.6            | 2.4            | 6.6            | 0.6            | 91.4  | 0.2            | 73.9           | 21.4            | 10.3           | 10.6           | 0.7            | 0.2            | 18.7          | 1.2            |
| RHRC135 | 128         | 130       | 2               | 507           | 228.8          | 3.8            | 1.4            | 3              | 7.9            | 0.6            | 102.2 | 0.2            | 94.7           | 27.3            | 2.3            | 13.7           | 0.8            | 0.2            | 18.9          | 1.2            |
| RHRC136 | 40          | 44        | 4               | 281           | 154.3          | 4.6            | 3.6            | 1.1            | 3.4            | 1              | 23    | 0.6            | 24.6           | 6.4             | 23             | 4.5            | 0.6            | 0.6            | 26.3          | 3.7            |
| RHRC136 | 52          | 56        | 4               | 546           | 376.5          | 5              | 2.9            | 1.7            | 5.2            | 1              | 45.6  | 0.4            | 35.2           | 9.7             | 27             | 6.7            | 0.8            | 0.4            | 24.6          | 3.2            |
| RHRC136 | 56          | 60        | 4               | 4194          | 1217           | 48.3           | 19.8           | 34.1           | 91             | 7.8            | 985.4 | 1.8            | 1053           | 303             | 31             | 155            | 10.3           | 2.3            | 219.7         | 14.1           |
| RHRC136 | 60          | 64        | 4               | 1537          | 900.3          | 9.8            | 4.5            | 6.9            | 16.2           | 1.6            | 215.5 | 0.6            | 225.8          | 68.6            | 8.6            | 32.7           | 2              | 0.6            | 39            | 4.1            |
| RHRC136 | 64          | 68        | 4               | 3560          | 812.6          | 37.1           | 13.7           | 32.1           | 76.7           | 5.6            | 881.2 | 1.3            | 1051           | 304.8           | 17             | 151.9          | 8.4            | 1.7            | 154.7         | 9.8            |
| RHRC136 | 68          | 72        | 4               | 2934          | 567.9          | 39.9           | 17.3           | 26.5           | 76.3           | 6.8            | 826.6 | 1.6            | 789.1          | 211             | 19.5           | 115.7          | 8.6            | 2              | 213.7         | 11.3           |
| RHRC136 | 72          | 76        | 4               | 1719          | 412.4          | 22.7           | 10.5           | 13.7           | 42             | 4.1            | 475.4 | 0.9            | 404.6          | 109.4           | 12             | 56.7           | 4.8            | 1.2            | 142.2         | 6.4            |
| RHRC136 | 76          | 80        | 4               | 1137          | 503.3          | 8.3            | 3.4            | 6.9            | 17.9           | 1.3            | 246.5 | 0.4            | 204.6          | 59.2            | 2.1            | 29.8           | 1.8            | 0.4            | 49            | 2.5            |
| RHRC136 | 80          | 84        | 4               | 1460          | 617.5          | 9.6            | 4.2            | 8.3            | 21.3           | 1.6            | 342.2 | 0.5            | 271.3          | 80.2            | 1.8            | 37             | 2.2            | 0.5            | 58.6          | 3.2            |
| RHRC136 | 84          | 88        | 4               | 1156          | 502            | 10.3           | 4.6            | 7.5            | 20.5           | 1.7            | 234.3 | 0.5            | 214.7          | 59.4            | 1.8            | 32.7           | 2.1            | 0.6            | 59.5          | 3.8            |



|         |             |           |                 |               | •              |                |                |                |                |                | •              |                |                | •               | •              |                | •              | •              | •             | MIN            |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | La2O3<br>(ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
| RHRC136 | 92          | 96        | 4               | 522           | 208.7          | 4.7            | 2              | 3.6            | 9              | 0.8            | 115.7          | 0.2            | 102.3          | 29.2            | 3.4            | 15.5           | 1              | 0.3            | 23.8          | 1.5            |
| RHRC136 | 96          | 100       | 4               | 493           | 205            | 4.4            | 1.8            | 3.2            | 8.7            | 0.7            | 104.2          | 0.2            | 92             | 25.4            | 7.2            | 14.1           | 0.9            | 0.2            | 23.4          | 1.4            |
| RHRC136 | 100         | 104       | 4               | 339           | 147.2          | 2.7            | 1.1            | 2.4            | 6.2            | 0.4            | 65.2           | 0.1            | 68.1           | 18.7            | 2              | 10.6           | 0.6            | 0.1            | 12.5          | 0.7            |
| RHRC136 | 104         | 108       | 4               | 453           | 201.9          | 3.4            | 1.4            | 2.8            | 7              | 0.5            | 102.2          | 0.2            | 77.9           | 22.4            | 2.8            | 11.8           | 0.7            | 0.2            | 16.3          | 1.1            |
| RHRC136 | 108         | 112       | 4               | 396           | 171.1          | 3.3            | 1.4            | 2.7            | 7.1            | 0.5            | 85.1           | 0.1            | 72             | 20.2            | 3.1            | 11.5           | 0.7            | 0.1            | 16            | 0.9            |
| RHRC136 | 112         | 116       | 4               | 822           | 381            | 4.4            | 1.9            | 3.7            | 9.7            | 0.7            | 185            | 0.2            | 140.8          | 43              | 6.4            | 17.7           | 1              | 0.2            | 24.2          | 1.6            |
| RHRC136 | 116         | 120       | 4               | 946           | 381.3          | 11.9           | 4.9            | 8              | 22.6           | 1.9            | 172.9          | 0.5            | 189            | 48.9            | 1.7            | 34.7           | 2.6            | 0.6            | 61            | 3.7            |
| RHRC136 | 120         | 124       | 4               | 582           | 255.2          | 4.9            | 2.2            | 3.5            | 9.5            | 0.8            | 116.7          | 0.3            | 107.4          | 30.2            | 4.4            | 16.1           | 1              | 0.3            | 27.7          | 1.7            |
| RHRC136 | 124         | 128       | 4               | 1062          | 507.3          | 4.1            | 1.8            | 3.8            | 8.9            | 0.7            | 246.8          | 0.2            | 174.8          | 55.5            | 15             | 18.7           | 0.9            | 0.2            | 21.5          | 1.4            |
| RHRC136 | 128         | 130       | 2               | 773           | 364.9          | 3.6            | 1.5            | 3.3            | 8              | 0.6            | 173            | 0.2            | 131.4          | 40.4            | 9.7            | 15.2           | 0.8            | 0.2            | 18.7          | 1.2            |
| RHRC138 | 36          | 40        | 4               | 1725          | 869.8          | 9.9            | 4.5            | 6.1            | 14.8           | 1.7            | 394.5          | 0.6            | 238.6          | 82.6            | 29.9           | 27.1           | 1.9            | 0.7            | 38.4          | 4              |
| RHRC138 | 40          | 44        | 4               | 1267          | 807.9          | 6.3            | 3.5            | 3.9            | 9.6            | 1.2            | 163.1          | 0.5            | 125.4          | 40.7            | 52.6           | 16.4           | 1.2            | 0.5            | 31.3          | 3.1            |
| RHRC138 | 44          | 48        | 4               | 847           | 572.2          | 4.9            | 2.1            | 2.7            | 6.1            | 0.8            | 86.7           | 0.3            | 68.8           | 21.1            | 51.7           | 10.7           | 1              | 0.3            | 15.8          | 2.1            |
| RHRC138 | 48          | 52        | 4               | 2364          | 1524           | 11.1           | 5.4            | 6.7            | 16.1           | 2              | 356.2          | 0.6            | 230            | 78.9            | 54             | 27.3           | 2              | 0.7            | 45.5          | 4.4            |
| RHRC138 | 52          | 56        | 4               | 1821          | 945.9          | 8.1            | 3.9            | 6.4            | 14.7           | 1.5            | 349.2          | 0.4            | 276.9          | 92.8            | 42.3           | 28.7           | 1.7            | 0.5            | 44.9          | 2.7            |
| RHRC138 | 56          | 60        | 4               | 1206          | 458.1          | 7.1            | 3.2            | 6.2            | 14.7           | 1.3            | 304.9          | 0.3            | 236.6          | 75.7            | 24.4           | 26.4           | 1.5            | 0.4            | 43.1          | 2.2            |
| RHRC138 | 60          | 64        | 4               | 983           | 303.9          | 6.4            | 2.8            | 5.6            | 13.6           | 1.1            | 273            | 0.3            | 217.6          | 67.5            | 21.3           | 24.4           | 1.4            | 0.4            | 41.6          | 2.1            |
| RHRC138 | 64          | 68        | 4               | 2387          | 299.3          | 19.6           | 8.3            | 18.2           | 45.8           | 3.3            | 845.3          | 0.9            | 707.4          | 205.8           | 20.9           | 78.7           | 4.4            | 1              | 122.8         | 5.8            |
| RHRC138 | 68<br>72    | 72<br>76  | 4               | 695<br>2211   | 256.5<br>379.7 | 5.1<br>21.2    | 2.6<br>9.1     | 3.9<br>17.8    | 9.6<br>45.3    | 0.9<br>3.6     | 164.9<br>701.8 | 0.4            | 136.5<br>622.3 | 42.3<br>175.3   | 19<br>22.7     | 16.3<br>72.1   | 1.1<br>4.7     | 1.2            | 33.2<br>126.8 | 6.6            |
| RHRC138 | 76          | 80        | 4               | 871           | 364.4          | 6.1            | 2.9            | 4              | 11.2           | 1.1            | 209.5          | 0.4            | 137.4          | 40.8            | 31.4           | 16.1           | 1.2            | 0.4            | 41.4          | 2.3            |
| RHRC138 | 80          | 84        | 4               | 518           | 225.6          | 3              | 1.4            | 2.3            | 5.4            | 0.5            | 117.1          | 0.4            | 82.9           | 26.1            | 26.1           | 9.4            | 0.6            | 0.4            | 16            | 1.2            |
| RHRC138 | 84          | 88        | 4               | 638           | 292.4          | 2.9            | 1.3            | 2.5            | 5.8            | 0.5            | 145.2          | 0.2            | 100            | 32.2            | 26.4           | 11             | 0.6            | 0.2            | 15.9          | 1.2            |
| RHRC138 | 88          | 92        | 4               | 612           | 277            | 3              | 1.4            | 2.4            | 5.8            | 0.5            | 138.1          | 0.2            | 97.2           | 31.1            | 26.7           | 10.5           | 0.6            | 0.2            | 16.1          | 1.2            |
| RHRC138 | 92          | 96        | 4               | 754           | 353.6          | 3.1            | 1.3            | 2.8            | 6.4            | 0.5            | 169.6          | 0.2            | 123.8          | 39.4            | 23             | 13             | 0.6            | 0.2            | 15.6          | 1              |
| RHRC138 | 96          | 100       | 4               | 688           | 316.7          | 3.7            | 1.6            | 3              | 7.3            | 0.6            | 151.9          | 0.2            | 112.5          | 35.3            | 19             | 13.2           | 0.8            | 0.2            | 20.1          | 1.3            |
| RHRC138 | 100         | 104       | 4               | 463           | 201.8          | 2.8            | 1.4            | 2.1            | 5              | 0.5            | 101.6          | 0.2            | 74.9           | 23              | 23.5           | 9              | 0.6            | 0.2            | 15.5          | 1.2            |



|         |             |           |                 |               |                |                |                |                |                |                |       |                |                |                 |                |                |                |                |               | MIN            |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | (ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
| RHRC138 | 104         | 108       | 4               | 583           | 262.3          | 4.5            | 1.7            | 3.8            | 9.5            | 0.7            | 114.5 | 0.2            | 109.8          | 32              | 2.9            | 15.7           | 1              | 0.2            | 22.9          | 1.3            |
| RHRC138 | 108         | 112       | 4               | 454           | 209.1          | 3.2            | 1.2            | 2.8            | 6.8            | 0.5            | 89.9  | 0.1            | 84.6           | 24.7            | 1.4            | 11.8           | 0.7            | 0.2            | 16.4          | 0.9            |
| RHRC138 | 112         | 116       | 4               | 517           | 240.3          | 3.5            | 1.3            | 3.2            | 7.9            | 0.5            | 99.4  | 0.2            | 97.6           | 28.7            | 1.5            | 13.4           | 0.8            | 0.2            | 17.2          | 1              |
| RHRC138 | 116         | 120       | 4               | 480           | 220.6          | 3.5            | 1.3            | 3.1            | 7.6            | 0.5            | 92.9  | 0.1            | 90.7           | 26.2            | 1.5            | 12.8           | 0.8            | 0.2            | 17.5          | 1              |
| RHRC138 | 120         | 124       | 4               | 496           | 229.3          | 3.4            | 1.3            | 3              | 7.2            | 0.5            | 99.2  | 0.1            | 92.5           | 27              | 1.4            | 12.8           | 0.8            | 0.2            | 16.4          | 0.9            |
| RHRC138 | 124         | 128       | 4               | 496           | 229.1          | 3.3            | 1.2            | 3.1            | 7.5            | 0.5            | 97.3  | 0.1            | 94.5           | 27.2            | 1.5            | 13             | 0.8            | 0.1            | 16.2          | 0.9            |
| RHRC138 | 128         | 132       | 4               | 520           | 239.2          | 3.8            | 1.3            | 3.4            | 8.3            | 0.6            | 98.1  | 0.1            | 99.6           | 28.8            | 2              | 14.3           | 0.9            | 0.2            | 18.1          | 1              |
| RHRC138 | 132         | 136       | 4               | 426           | 194            | 3.3            | 1.2            | 2.7            | 6.7            | 0.5            | 82.4  | 0.1            | 80.4           | 23.4            | 1.7            | 11.4           | 0.8            | 0.2            | 16.5          | 0.9            |
| RHRC138 | 136         | 140       | 4               | 440           | 197.2          | 3.7            | 1.4            | 3              | 7.5            | 0.6            | 84.7  | 0.2            | 83.3           | 24.1            | 1.4            | 12.2           | 0.8            | 0.2            | 18.6          | 1.1            |
| RHRC138 | 140         | 144       | 4               | 385           | 172.1          | 3.1            | 1.1            | 2.7            | 6.6            | 0.5            | 70    | 0.1            | 77.1           | 21.8            | 1.2            | 11.2           | 0.7            | 0.1            | 15.6          | 0.9            |
| RHRC138 | 144         | 148       | 4               | 545           | 252.8          | 3.7            | 1.3            | 3.3            | 8.1            | 0.6            | 104.6 | 0.1            | 104.7          | 30.2            | 1.2            | 14.2           | 0.8            | 0.2            | 17.8          | 1              |
| RHRC138 | 148         | 152       | 4               | 581           | 268.8          | 4              | 1.6            | 3.6            | 8.8            | 0.6            | 114.2 | 0.2            | 108.3          | 31.4            | 1.8            | 15             | 1              | 0.2            | 20.3          | 1.2            |
| RHRC138 | 152         | 156       | 4               | 612           | 269.3          | 4.5            | 1.5            | 4.2            | 10.7           | 0.7            | 122.2 | 0.1            | 119.5          | 33.8            | 3.5            | 17.7           | 1.1            | 0.2            | 22            | 1.1            |
| RHRC138 | 156         | 160       | 4               | 738           | 347.5          | 4.2            | 1.5            | 3.8            | 9.2            | 0.6            | 160.1 | 0.2            | 128.6          | 39.5            | 2.8            | 16.4           | 0.9            | 0.2            | 21.2          | 1.2            |
| RHRC138 | 160         | 164       | 4               | 584           | 271.3          | 3.7            | 1.4            | 3.2            | 7.7            | 0.6            | 132.3 | 0.2            | 97.9           | 29.7            | 2.1            | 13.1           | 0.8            | 0.2            | 18.3          | 1.1            |
| RHRC138 | 164         | 168       | 4               | 431           | 194.7          | 3.4            | 1.2            | 2.8            | 6.8            | 0.5            | 89.3  | 0.1            | 78.2           | 22.6            | 1.7            | 11             | 0.8            | 0.2            | 16.2          | 1              |
| RHRC138 | 168         | 172       | 4               | 545           | 249.3          | 3.9            | 1.5            | 3.3            | 8.4            | 0.6            | 111.3 | 0.2            | 98.9           | 29              | 1.5            | 13.9           | 0.9            | 0.2            | 20.9          | 1.2            |
| RHRC138 | 172         | 176       | 4               | 435           | 192.3          | 3.7            | 1.4            | 2.9            | 7.5            | 0.6            | 87.8  | 0.2            | 80.4           | 23              | 1.8            | 12.2           | 0.8            | 0.2            | 18.6          | 1.1            |
| RHRC138 | 176         | 180       | 4               | 429           | 192.5          | 3.3            | 1.2            | 2.8            | 6.7            | 0.5            | 92.3  | 0.1            | 76.7           | 22.3            | 1.8            | 11             | 0.8            | 0.1            | 16            | 0.9            |
| RHRC138 | 180         | 184       | 4               | 639           | 275.6          | 6.1            | 2.4            | 4.7            | 12             | 1              | 126.2 | 0.3            | 120.5          | 33.5            | 1.5            | 19             | 1.4            | 0.3            | 32.4          | 1.9            |
| RHRC154 | 44          | 48        | 4               | 279           | 89.7           | 5.1            | 2.9            | 1.7            | 6              | 1              | 61.5  | 0.4            | 38.2           | 11.3            | 23.5           | 6.6            | 0.9            | 0.4            | 27            | 2.5            |
| RHRC154 | 48          | 52        | 4               | 262           | 93.8           | 2.5            | 1.3            | 1.6            | 4.5            | 0.5            | 62.5  | 0.2            | 47.4           | 14              | 9.8            | 6.9            | 0.5            | 0.2            | 15            | 1.1            |
| RHRC154 | 68          | 72        | 4               | 724           | 322.9          | 5.5            | 2.2            | 4.2            | 12.2           | 0.8            | 155.4 | 0.2            | 129.5          | 37.2            | 2.5            | 18.7           | 1.3            | 0.3            | 29.2          | 1.6            |
| RHRC154 | 72          | 76        | 4               | 1290          | 603.9          | 7              | 2.8            | 5.8            | 16.3           | 1.1            | 290.6 | 0.3            | 221.1          | 66.3            | 6.9            | 27.3           | 1.6            | 0.3            | 36.1          | 2              |
| RHRC154 | 76          | 80        | 4               | 967           | 413.4          | 8.9            | 3.4            | 6.6            | 19.2           | 1.3            | 193.1 | 0.3            | 188            | 51              | 3.2            | 28.9           | 2              | 0.4            | 44.7          | 2.3            |
| RHRC154 | 80          | 84        | 4               | 938           | 374.1          | 11.5           | 4.7            | 7.9            | 22.7           | 1.8            | 174.3 | 0.5            | 193.9          | 49              | 1.4            | 33.5           | 2.5            | 0.6            | 55.9          | 3.4            |
| RHRC154 | 84          | 88        | 4               | 730           | 308.6          | 8.1            | 3.4            | 5.4            | 15.6           | 1.3            | 138.2 | 0.3            | 140.6          | 38.2            | 1.7            | 23.1           | 1.7            | 0.4            | 40.6          | 2.4            |



|         |             |           |                 |               |                |                |                |                |                |                |       |                |                |                 |                |                |                |                |               | MIN            |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | (ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
| RHRC154 | 88          | 92        | 4               | 354           | 158.7          | 2.9            | 1.1            | 2.3            | 6.2            | 0.4            | 70.1  | 0.1            | 66.3           | 18.9            | 1.8            | 9.5            | 0.7            | 0.1            | 14            | 0.9            |
| RHRC154 | 92          | 96        | 4               | 500           | 225.4          | 3.3            | 1.3            | 2.7            | 7.5            | 0.5            | 110.6 | 0.1            | 89             | 26              | 1.7            | 12.2           | 0.8            | 0.2            | 17.5          | 1              |
| RHRC154 | 96          | 100       | 4               | 444           | 200            | 3.3            | 1.3            | 2.5            | 7.1            | 0.5            | 95.3  | 0.2            | 78.7           | 23.1            | 1.5            | 11.3           | 0.7            | 0.2            | 17            | 1              |
| RHRC154 | 100         | 104       | 4               | 377           | 172.7          | 2.4            | 1              | 2              | 5.5            | 0.4            | 78.9  | 0.1            | 69.1           | 20.3            | 1.7            | 8.9            | 0.6            | 0.1            | 12.4          | 0.8            |
| RHRC154 | 104         | 108       | 4               | 458           | 205.1          | 3.3            | 1.3            | 2.7            | 7.2            | 0.5            | 97.5  | 0.1            | 82.8           | 24.2            | 1.8            | 11.6           | 0.8            | 0.2            | 17.6          | 1              |
| RHRC154 | 108         | 112       | 4               | 490           | 219.5          | 3.6            | 1.5            | 2.9            | 7.7            | 0.6            | 102.7 | 0.2            | 89.8           | 26.2            | 2.1            | 12.5           | 0.8            | 0.2            | 18.5          | 1.1            |
| RHRC154 | 112         | 116       | 4               | 446           | 200            | 3.2            | 1.4            | 2.6            | 6.8            | 0.5            | 95.2  | 0.2            | 79.8           | 23.4            | 1.7            | 10.9           | 0.7            | 0.2            | 18.3          | 1.2            |
| RHRC154 | 116         | 120       | 4               | 467           | 204.9          | 3.8            | 1.7            | 2.8            | 7.9            | 0.6            | 97.1  | 0.2            | 84.8           | 24.4            | 1.5            | 12             | 0.8            | 0.2            | 22.4          | 1.4            |
| RHRC154 | 120         | 124       | 4               | 545           | 248.1          | 3.5            | 1.5            | 3              | 7.6            | 0.6            | 120.2 | 0.2            | 95             | 28.3            | 1.7            | 12.6           | 0.8            | 0.2            | 20.8          | 1.2            |
| RHRC155 | 44          | 48        | 4               | 259           | 106.7          | 3.9            | 2              | 2              | 5.7            | 0.7            | 45.1  | 0.3            | 49.4           | 13.7            | 3.7            | 8.3            | 0.7            | 0.3            | 15.2          | 1.6            |
| RHRC155 | 48          | 52        | 4               | 262           | 112.6          | 3.6            | 1.7            | 2.2            | 6              | 0.6            | 38.6  | 0.2            | 53.2           | 14              | 2.1            | 8.9            | 0.8            | 0.2            | 16            | 1.3            |
| RHRC155 | 52          | 56        | 4               | 639           | 276.7          | 6.8            | 2.9            | 4.8            | 13.4           | 1.1            | 112.4 | 0.3            | 127.3          | 33.6            | 2.8            | 20             | 1.5            | 0.4            | 33            | 2.1            |
| RHRC155 | 56          | 60        | 4               | 951           | 402.5          | 9.3            | 3.7            | 7              | 19.7           | 1.4            | 175.1 | 0.4            | 192.8          | 51              | 4.3            | 30.6           | 2.1            | 0.4            | 47.7          | 2.5            |
| RHRC155 | 60          | 64        | 4               | 1364          | 548.4          | 19.5           | 8.1            | 12.3           | 36.5           | 3.1            | 226.3 | 0.8            | 275.8          | 68.6            | 4.4            | 50.4           | 4.2            | 1              | 99.4          | 5.5            |
| RHRC155 | 64          | 68        | 4               | 880           | 377.2          | 8.9            | 3.7            | 6.1            | 17.4           | 1.4            | 178.8 | 0.4            | 163.1          | 45.4            | 1.7            | 25.1           | 2              | 0.5            | 46.3          | 2.6            |
| RHRC155 | 68          | 72        | 4               | 376           | 167.4          | 3.8            | 1.7            | 2.7            | 7.2            | 0.6            | 65.5  | 0.2            | 73.9           | 19.9            | 1.1            | 11.1           | 0.8            | 0.2            | 18.7          | 1.3            |
| RHRC155 | 72          | 76        | 4               | 327           | 144.1          | 3.3            | 1.5            | 2.4            | 6.5            | 0.5            | 56.3  | 0.2            | 65.1           | 17.7            | 1.4            | 10.1           | 0.7            | 0.2            | 15.9          | 1.1            |
| RHRC155 | 76          | 80        | 4               | 271           | 116            | 3.1            | 1.3            | 2.2            | 5.9            | 0.5            | 44.8  | 0.2            | 55.1           | 14.7            | 0.9            | 9              | 0.7            | 0.2            | 15.1          | 1              |
| RHRC155 | 80          | 84        | 4               | 285           | 122.5          | 3.2            | 1.3            | 2.2            | 5.9            | 0.5            | 48.6  | 0.2            | 57.7           | 15.6            | 0.8            | 9.1            | 0.7            | 0.2            | 15.2          | 1.1            |
| RHRC155 | 84          | 88        | 4               | 300           | 128.7          | 3.3            | 1.3            | 2.2            | 6.2            | 0.5            | 52.6  | 0.2            | 59.4           | 16.3            | 1.1            | 9.3            | 0.7            | 0.2            | 17.1          | 1.1            |
| RHRC155 | 88          | 92        | 4               | 321           | 141.5          | 3.1            | 1.3            | 2.4            | 6.4            | 0.5            | 55.1  | 0.2            | 65.6           | 18.2            | 0.9            | 9.7            | 0.7            | 0.2            | 14.9          | 1              |
| RHRC155 | 92          | 96        | 4               | 712           | 337.1          | 3.8            | 1.5            | 3.5            | 9.4            | 0.6            | 139.7 | 0.2            | 137.7          | 40.6            | 1.2            | 17.1           | 0.9            | 0.2            | 17.8          | 1.1            |
| RHRC155 | 96          | 100       | 4               | 439           | 199            | 3.4            | 1.3            | 2.6            | 7.2            | 0.5            | 79.8  | 0.2            | 89.2           | 25.2            | 0.8            | 11.8           | 0.8            | 0.2            | 15.8          | 1              |
| RHRC155 | 100         | 104       | 4               | 417           | 183.3          | 3.7            | 1.5            | 3              | 8.1            | 0.6            | 73.6  | 0.2            | 85.3           | 23.4            | 1.2            | 12.9           | 0.9            | 0.2            | 17.8          | 1.2            |
| RHRC155 | 108         | 112       | 4               | 388           | 165.4          | 4.2            | 1.7            | 2.9            | 8              | 0.7            | 71    | 0.2            | 75.6           | 20.6            | 1.4            | 12             | 0.9            | 0.2            | 21.4          | 1.5            |
| RHRC155 | 112         | 116       | 4               | 360           | 152.5          | 3.9            | 1.6            | 2.7            | 7.6            | 0.6            | 66.9  | 0.2            | 70.1           | 19.2            | 1.1            | 11.2           | 0.9            | 0.2            | 20.1          | 1.2            |
| RHRC155 | 116         | 120       | 4               | 257           | 95.9           | 3.2            | 1.5            | 1.7            | 5.1            | 0.5            | 43.3  | 0.2            | 42.6           | 11.7            | 24.8           | 6.9            | 0.6            | 0.2            | 17            | 1.2            |



| RHRC155   124   128   4   918   395.3   8.1   3.2   6.1   17.1   1.3   193   0.4   170.3   47.3   3.2   26.2   1.8   0.4     RHRC155   128   130   2   727   312.3   6.7   2.7   4.9   13.7   1.1   148.7   0.3   136.5   38   2.5   21.6   1.5   0.3     RHRC156   44   48   4   713   278.1   9.5   4.8   4.6   14   1.7   155.6   0.6   116.1   32.8   18.9   18.3   1.8   0.7     RHRC156   48   52   4   389   170.9   4.1   1.6   3.1   8.4   0.6   86.9   0.2   85.2   2.5   2.5   1.1   1.4   0.3     RHRC156   66   66   4   546   251.9   4   1.6   3.1   8.4   0.5   86.9   0.2   103.2   28.9   2   16.2   1.1   0.3     RHRC156   68   72   4   540   237.8   5   2   3.8   10.2   0.8   102.3   0.2   103.2   28.9   2   16.2   1.1   0.3     RHRC156   78   78   76   4   621   272.4   5.6   2.2   4.1   11.6   0.9   123   0.3   115.1   31.6   3.1   1.7   1.3   0.3     RHRC156   80   84   4   466   195.3   4   1.6   3.1   8.4   0.6   86.9   0.2   85.2   24   1.2   13   0.9   0.2     RHRC156   80   84   4   462   197.1   4.1   1.6   3.1   8.3   0.6   80.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   80   84   4   482   197.1   4.1   1.6   3.1   8.3   0.6   80.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   80   84   4   482   197.1   4.1   1.6   3.1   8.3   0.6   80.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   80   80   84   4   482   197.1   4.1   1.6   3.1   8.3   0.6   80.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   90   90   4   316   136.3   3.2   1.4   2.4   6.5   0.5   58.5   0.2   61.3   16.8   1.1   9.6   0.7   0.2     RHRC156   100   104   4   272   114.6   3.1   1.4   2.1   5.9   0.5   4.8   0.2   67.7   0.2   67.7   22.4   1.5   11.1   0.8   0.2     RHRC156   116   102   4   426   189   3.7   1.5   2.9   7.3   0.6   62.7   0.2   67.6   0.2   69   19.6   1.4   10.2   0.7   0.2     RHRC156   116   120   4   426   189   3.7   1.5   2.9   7.3   0.6   67.6   0.2   69   19.6   1.4   10.2   0.7   0.2     RHRC156   120   124   4   389   178.3   3.1   1.3   2.4   6.5   0.   | MI      |               |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|----------------|----------------|------|------|-----------------|----------------|-----|-------|-----|----------------|-----|----------------|-----|-------|-----|---|-----|-----|---------|
| RHRC155   128   130   2   727   312.3   6.7   2.7   4.9   13.7   1.1   148.7   0.3   136.5   38   2.5   21.6   1.5   0.3     RHRC156   44   48   4   713   278.1   9.5   4.8   4.6   14   1.7   155.6   0.6   116.1   32.8   18.9   18.3   1.8   0.7     RHRC156   48   52   4   389   179.8   4   1.7   2.6   7.3   0.7   63.7   0.2   73.2   20.4   2.9   11.1   0.8   0.2     RHRC156   52   56   4   589   286.4   4.7   1.9   3.6   9.6   0.7   104.3   0.2   103.3   29.2   2.5   14.9   1.1   0.3     RHRC156   60   64   4   546   251.9   4   1.6   3.3   9.1   0.6   99.6   0.2   107.1   30.2   1.1   14.6   0.9   0.2     RHRC156   64   68   4   304   129.2   3.4   1.3   2.5   6.8   0.5   49.9   0.2   63.5   16.7   1.5   10.1   0.7   0.2     RHRC156   68   72   4   540   237.8   5   2   3.8   10.2   0.8   102.3   0.2   103.2   28.9   2   16.2   1.1   0.3     RHRC156   76   80   4   446   195.3   4   1.6   3.1   8.4   0.6   86.9   0.2   85.2   24   1.2   13   0.9   0.2     RHRC156   80   84   4   452   197.1   4.1   1.6   3.1   8.3   0.6   90.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   80   84   4   452   197.1   4.1   1.6   3.1   8.3   0.6   90.4   0.2   84.5   23.9   1.5   12.7   0.9   0.2     RHRC156   80   90   4   316   136.3   3.2   1.4   2.4   6.5   0.5   58.5   0.2   61.3   16.8   1.1   9.6   0.7   0.2     RHRC156   90   90   4   316   136.3   3.2   1.4   2.4   6.5   0.5   58.5   0.2   61.8   16.8   1.1   9.6   0.7   0.2     RHRC156   100   104   4   272   114.6   3.1   1.4   2.1   5.9   0.5   48   0.2   53.1   1.4   5.1   1.1   1.1   0.8   0.2     RHRC156   101   104   4   414   187.3   3.2   1.3   2.4   6.5   0.5   58.5   0.2   61.8   16.8   0.3   9.6   0.7   0.2     RHRC156   116   120   4   426   189   3.7   1.5   2.9   7.3   0.6   62.7   0.2   81.1   2.9   1.4   11.8   0.8   0.2     RHRC156   116   120   4   426   189   3.7   1.5   2.9   7.3   0.6   67.6   0.2   69   19.6   1.4   10.2   0.7   0.2     RHRC156   120   124   4   389   178.3   3.1   1.2   2.3   6.3   0.5   75.7   0.2   71.8   21.1      |         | Y2O3<br>(ppm) | Tm2O3<br>(ppm) | Tb4O7<br>(ppm) |      |      | Pr6O11<br>(ppm) | Nd2O3<br>(ppm) |     | (ppm) |     | Gd2O3<br>(ppm) |     | Er2O3<br>(ppm) |     |       |     |   |     |     | Hole ID |
| RHRC156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 2.5 | 41.2          | 0.4            | 1.8            | 26.2 | 3.2  | 47.3            | 170.3          | 0.4 | 193   | 1.3 | 17.1           | 6.1 | 3.2            | 8.1 | 395.3 | 918 | 4 | 128 | 124 | RHRC155 |
| RHRC156 48 52 4 389 179.8 4 1.7 2.6 7.3 0.7 63.7 0.2 73.2 20.4 2.9 11.1 0.8 0.2 RHRC156 52 56 4 589 286.4 4.7 1.9 3.6 9.6 0.7 104.3 0.2 103.3 29.2 2.5 14.9 1.1 0.3 RHRC156 60 64 4 546 251.9 4 1.6 3.3 9.1 0.6 99.6 0.2 107.1 30.2 1.1 14.6 0.9 0.2 RHRC156 64 68 4 304 129.2 3.4 1.3 2.5 6.8 0.5 49.9 0.2 63.5 16.7 1.5 10.1 0.7 0.2 RHRC156 68 72 4 540 237.8 5 2 3.8 10.2 0.8 102.3 0.2 103.2 28.9 2 16.2 1.1 0.3 RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3 RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2 RHRC156 84 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 89 9.0 4 316 136.3 3.2 1.4 2.4 6.5 0.5 8.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 99 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 8.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 53.1 14.5 1.1 8.7 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 106 107 108 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 71.8 21.1 1.5 10 0.7 0.2 RHRC156 124 128 4 361 162.8 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2 RHRC156 124 128 4 361 162.8 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4 2.1 | 34.4          | 0.3            | 1.5            | 21.6 | 2.5  | 38              | 136.5          | 0.3 | 148.7 | 1.1 | 13.7           | 4.9 | 2.7            | 6.7 | 312.3 | 727 | 2 | 130 | 128 | RHRC155 |
| RHRC156 52 56 4 589 286.4 4.7 1.9 3.6 9.6 0.7 104.3 0.2 103.3 29.2 2.5 14.9 1.1 0.3 RHRC156 60 64 4 546 251.9 4 1.6 3.3 9.1 0.6 99.6 0.2 107.1 30.2 1.1 14.6 0.9 0.2 RHRC156 64 68 4 304 129.2 3.4 1.3 2.5 6.8 0.5 49.9 0.2 63.5 16.7 1.5 10.1 0.7 0.2 RHRC156 68 72 4 540 237.8 5 2 3.8 10.2 0.8 102.3 0.2 103.2 28.9 2 16.2 1.1 0.3 RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3 RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 84 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 92 96 4 360 154.7 3.9 1.7 2.7 7.3 0.6 66.4 0.2 69 19 1.1 11.1 0.8 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 63.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.7 0.2 61.8 16.8 0.3 9.6 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.3 6.1 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 10.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 | 1.6 3.8 | 51.6          | 0.7            | 1.8            | 18.3 | 18.9 | 32.8            | 116.1          | 0.6 | 155.6 | 1.7 | 14             | 4.6 | 4.8            | 9.5 | 278.1 | 713 | 4 | 48  | 44  | RHRC156 |
| RHRC156 60 64 4 546 251.9 4 1.6 3.3 9.1 0.6 99.6 0.2 107.1 30.2 1.1 14.6 0.9 0.2 RHRC156 64 68 4 304 129.2 3.4 1.3 2.5 6.8 0.5 49.9 0.2 63.5 16.7 1.5 10.1 0.7 0.2 RHRC156 68 72 4 540 237.8 5 2 3.8 10.2 0.8 102.3 0.2 103.2 28.9 2 16.2 1.1 0.3 RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3 RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2 RHRC156 84 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 88 92 4 398 170.9 4.1 1.6 3 8.1 0.6 74.9 0.2 76.9 21.1 1.4 12.3 0.9 0.2 RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 53.1 14.5 1.1 8.7 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.7 0.2 61.8 16.8 0.3 9.6 0.7 0.2 RHRC156 112 116 4 414 187.3 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.7 22.4 1.5 11.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 10.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.5 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.5 0.5 67.6 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.5 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                       | 9.4 1.2 | 19.4          | 0.2            | 0.8            | 11.1 | 2.9  | 20.4            | 73.2           | 0.2 | 63.7  | 0.7 | 7.3            | 2.6 | 1.7            | 4   | 179.8 | 389 | 4 | 52  | 48  | RHRC156 |
| RHRC156 64 68 4 304 129.2 3.4 1.3 2.5 6.8 0.5 49.9 0.2 63.5 16.7 1.5 10.1 0.7 0.2 RHRC156 68 72 4 540 237.8 5 2 3.8 10.2 0.8 102.3 0.2 103.2 28.9 2 16.2 1.1 0.3 RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3 RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2 RHRC156 88 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 88 92 4 398 170.9 4.1 1.6 3 8.1 0.6 74.9 0.2 76.9 21.1 1.4 12.3 0.9 0.2 RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 96 100 4 360 154.7 3.9 1.7 2.7 7.3 0.6 66.4 0.2 69 19 1.1 11.1 0.8 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 53.1 14.5 1.1 8.7 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 112 116 4 414 187.3 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 82.7 0.2 81.1 2.9 1.4 11.8 0.8 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 82.7 0.2 81.1 2.9 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 124 128 4 361 162.8 3.1 1.3 2.4 6.5 0.5 67.6 0.2 69 19.6 1.4 11.8 0.8 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4 1.5 | 24.4          | 0.3            | 1.1            | 14.9 | 2.5  | 29.2            | 103.3          | 0.2 | 104.3 | 0.7 | 9.6            | 3.6 | 1.9            | 4.7 | 286.4 | 589 | 4 | 56  | 52  | RHRC156 |
| RHRC156 68 72 4 540 237.8 5 2 3.8 10.2 0.8 102.3 0.2 103.2 28.9 2 16.2 1.1 0.3  RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3  RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2  RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2  RHRC156 88 89 2 4 398 170.9 4.1 1.6 3 8.1 0.6 74.9 0.2 76.9 21.1 1.4 12.3 0.9 0.2  RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2  RHRC156 96 100 4 360 154.7 3.9 1.7 2.7 7.3 0.6 66.4 0.2 69 19 1.1 11.1 0.8 0.2  RHRC156 104 108 4 310 133.5 3.1 1.3 2.3 6.1 0.5 57 0.2 61.8 16.8 0.3 9.6 0.7 0.2  RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 88.6 0.2 7.7 7.7 22.4 1.5 11.2 0.7 0.2  RHRC156 100 124 4 426 189 3.7 1.5 2.9 7.3 0.6 82.7 0.2 81.1 22.9 1.4 11.8 0.8 0.2  RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 71.8 21.1 1.5 1.0 0.7 0.2  RHRC156 124 128 4 361 162.8 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.7 1.3 | 19.7          | 0.2            | 0.9            | 14.6 | 1.1  | 30.2            | 107.1          | 0.2 | 99.6  | 0.6 | 9.1            | 3.3 | 1.6            | 4   | 251.9 | 546 | 4 | 64  | 60  | RHRC156 |
| RHRC156 72 76 4 621 272.4 5.6 2.2 4.1 11.6 0.9 123 0.3 115.1 31.6 3.1 17.7 1.3 0.3 RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 88 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2 RHRC156 84 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 88 92 4 398 170.9 4.1 1.6 3 8.1 0.6 74.9 0.2 76.9 21.1 1.4 12.3 0.9 0.2 RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 96 100 4 360 154.7 3.9 1.7 2.7 7.3 0.6 66.4 0.2 69 19 1.1 11.1 0.8 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 53.1 14.5 1.1 8.7 0.7 0.2 RHRC156 104 108 4 310 133.5 3.1 1.3 2.3 6.1 0.5 57 0.2 61.8 16.8 0.3 9.6 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 112 116 4 414 187.3 3.2 1.3 2.4 6.5 0.5 82.7 0.2 81.1 22.9 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 61.8 11.1 22.9 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.7 22.4 1.5 11.2 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 71.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5 1.1 | 16.5          | 0.2            | 0.7            | 10.1 | 1.5  | 16.7            | 63.5           | 0.2 | 49.9  | 0.5 | 6.8            | 2.5 | 1.3            | 3.4 | 129.2 | 304 | 4 | 68  | 64  | RHRC156 |
| RHRC156 76 80 4 446 195.3 4 1.6 3.1 8.4 0.6 86.9 0.2 85.2 24 1.2 13 0.9 0.2 RHRC156 80 84 4 452 197.1 4.1 1.6 3.1 8.3 0.6 90.4 0.2 84.5 23.9 1.5 12.7 0.9 0.2 RHRC156 84 88 4 306 128.6 3.7 1.5 2.6 7 0.6 52.4 0.2 62.2 16.6 1.2 10.2 0.8 0.2 RHRC156 88 92 4 398 170.9 4.1 1.6 3 8.1 0.6 74.9 0.2 76.9 21.1 1.4 12.3 0.9 0.2 RHRC156 92 96 4 316 136.3 3.2 1.4 2.4 6.5 0.5 58.5 0.2 61.3 16.8 1.1 9.6 0.7 0.2 RHRC156 96 100 4 360 154.7 3.9 1.7 2.7 7.3 0.6 66.4 0.2 69 19 1.1 11.1 0.8 0.2 RHRC156 100 104 4 272 114.6 3.1 1.4 2.1 5.9 0.5 48 0.2 53.1 14.5 1.1 8.7 0.7 0.2 RHRC156 104 108 4 310 133.5 3.1 1.3 2.3 6.1 0.5 57 0.2 61.8 16.8 0.3 9.6 0.7 0.2 RHRC156 108 112 4 354 156.7 3.2 1.3 2.4 6.5 0.5 68.2 0.2 67.6 19.1 0.8 10.2 0.7 0.2 RHRC156 116 120 4 426 189 3.7 1.5 2.9 7.3 0.6 82.7 0.2 81.1 22.9 1.4 11.8 0.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 69 19.6 1.4 10.8 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.2 2.3 6.3 0.5 75.7 0.2 77.8 21.1 1.5 10 0.7 0.2 RHRC156 120 124 4 389 178.3 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2 RHRC156 124 128 4 361 162.8 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8 1.7 | 24.8          | 0.3            | 1.1            | 16.2 | 2    | 28.9            | 103.2          | 0.2 | 102.3 | 0.8 | 10.2           | 3.8 | 2              | 5   | 237.8 | 540 | 4 | 72  | 68  | RHRC156 |
| RHRC156         80         84         4         452         197.1         4.1         1.6         3.1         8.3         0.6         90.4         0.2         84.5         23.9         1.5         12.7         0.9         0.2           RHRC156         84         88         4         306         128.6         3.7         1.5         2.6         7         0.6         52.4         0.2         62.2         16.6         1.2         10.2         0.8         0.2           RHRC156         88         92         4         398         170.9         4.1         1.6         3         8.1         0.6         74.9         0.2         76.9         21.1         1.4         12.3         0.9         0.2           RHRC156         92         96         4         316         136.3         3.2         1.4         2.4         6.5         0.5         58.5         0.2         61.3         16.8         1.1         9.6         0.7         0.2           RHRC156         96         100         4         360         154.7         3.9         1.7         2.7         7.3         0.6         66.4         0.2         69         19         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6 1.8 | 29.6          | 0.3            | 1.3            | 17.7 | 3.1  | 31.6            | 115.1          | 0.3 | 123   | 0.9 | 11.6           | 4.1 | 2.2            | 5.6 | 272.4 | 621 | 4 | 76  | 72  | RHRC156 |
| RHRC156         84         88         4         306         128.6         3.7         1.5         2.6         7         0.6         52.4         0.2         62.2         16.6         1.2         10.2         0.8         0.2           RHRC156         88         92         4         398         170.9         4.1         1.6         3         8.1         0.6         74.9         0.2         76.9         21.1         1.4         12.3         0.9         0.2           RHRC156         92         96         4         316         136.3         3.2         1.4         2.4         6.5         0.5         58.5         0.2         61.3         16.8         1.1         9.6         0.7         0.2           RHRC156         96         100         4         360         154.7         3.9         1.7         2.7         7.3         0.6         66.4         0.2         69         19         1.1         11.1         0.8         0.2           RHRC156         100         104         4         272         114.6         3.1         1.4         2.1         5.9         0.5         48         0.2         53.1         14.5         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6 1.2 | 20.6          | 0.2            | 0.9            | 13   | 1.2  | 24              | 85.2           | 0.2 | 86.9  | 0.6 | 8.4            | 3.1 | 1.6            | 4   | 195.3 | 446 | 4 | 80  | 76  | RHRC156 |
| RHRC156         88         92         4         398         170.9         4.1         1.6         3         8.1         0.6         74.9         0.2         76.9         21.1         1.4         12.3         0.9         0.2           RHRC156         92         96         4         316         136.3         3.2         1.4         2.4         6.5         0.5         58.5         0.2         61.3         16.8         1.1         9.6         0.7         0.2           RHRC156         96         100         4         360         154.7         3.9         1.7         2.7         7.3         0.6         66.4         0.2         69         19         1.1         11.1         0.8         0.2           RHRC156         100         104         4         272         114.6         3.1         1.4         2.1         5.9         0.5         48         0.2         53.1         14.5         1.1         8.7         0.7         0.2           RHRC156         104         108         4         310         133.5         3.1         1.3         2.3         6.1         0.5         57         0.2         61.8         16.8         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4 1.3 | 21.4          | 0.2            | 0.9            | 12.7 | 1.5  | 23.9            | 84.5           | 0.2 | 90.4  | 0.6 |                | 3.1 | 1.6            | 4.1 | 197.1 | 452 | 4 | 84  | 80  | RHRC156 |
| RHRC156         92         96         4         316         136.3         3.2         1.4         2.4         6.5         0.5         58.5         0.2         61.3         16.8         1.1         9.6         0.7         0.2           RHRC156         96         100         4         360         154.7         3.9         1.7         2.7         7.3         0.6         66.4         0.2         69         19         1.1         11.1         0.8         0.2           RHRC156         100         104         4         272         114.6         3.1         1.4         2.1         5.9         0.5         48         0.2         53.1         14.5         1.1         8.7         0.7         0.2           RHRC156         104         108         4         310         133.5         3.1         1.3         2.3         6.1         0.5         57         0.2         61.8         16.8         0.3         9.6         0.7         0.2           RHRC156         108         112         4         354         156.7         3.2         1.3         2.4         6.5         0.5         68.2         0.2         67.6         19.1         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 1.1  | 17            | 0.2            | 0.8            | 10.2 | 1.2  | 16.6            | 62.2           | 0.2 | 52.4  | 0.6 | 7              | 2.6 | 1.5            | 3.7 | 128.6 | 306 | 4 | 88  | 84  | RHRC156 |
| RHRC156         96         100         4         360         154.7         3.9         1.7         2.7         7.3         0.6         66.4         0.2         69         19         1.1         11.1         0.8         0.2           RHRC156         100         104         4         272         114.6         3.1         1.4         2.1         5.9         0.5         48         0.2         53.1         14.5         1.1         8.7         0.7         0.2           RHRC156         104         108         4         310         133.5         3.1         1.3         2.3         6.1         0.5         57         0.2         61.8         16.8         0.3         9.6         0.7         0.2           RHRC156         108         112         4         354         156.7         3.2         1.3         2.4         6.5         0.5         68.2         0.2         67.6         19.1         0.8         10.2         0.7         0.2           RHRC156         112         116         4         414         187.3         3.2         1.3         2.6         7.1         0.5         81.6         0.2         77.7         22.4         1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6 1.3 | 20.6          |                |                | 12.3 | 1.4  | 21.1            |                |     |       |     |                | 3   | 1.6            |     | 170.9 | 398 | 4 |     |     | RHRC156 |
| RHRC156         100         104         4         272         114.6         3.1         1.4         2.1         5.9         0.5         48         0.2         53.1         14.5         1.1         8.7         0.7         0.2           RHRC156         104         108         4         310         133.5         3.1         1.3         2.3         6.1         0.5         57         0.2         61.8         16.8         0.3         9.6         0.7         0.2           RHRC156         108         112         4         354         156.7         3.2         1.3         2.4         6.5         0.5         68.2         0.2         67.6         19.1         0.8         10.2         0.7         0.2           RHRC156         112         116         4         414         187.3         3.2         1.3         2.6         7.1         0.5         81.6         0.2         77.7         22.4         1.5         11.2         0.7         0.2           RHRC156         116         120         4         426         189         3.7         1.5         2.9         7.3         0.6         82.7         0.2         81.1         22.9         1.4 </td <td></td> <td>16.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 16.5          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156         104         108         4         310         133.5         3.1         1.3         2.3         6.1         0.5         57         0.2         61.8         16.8         0.3         9.6         0.7         0.2           RHRC156         108         112         4         354         156.7         3.2         1.3         2.4         6.5         0.5         68.2         0.2         67.6         19.1         0.8         10.2         0.7         0.2           RHRC156         112         116         4         414         187.3         3.2         1.3         2.6         7.1         0.5         81.6         0.2         77.7         22.4         1.5         11.2         0.7         0.2           RHRC156         116         120         4         426         189         3.7         1.5         2.9         7.3         0.6         82.7         0.2         81.1         22.9         1.4         11.8         0.8         0.2           RHRC156         120         124         4         389         178.3         3.1         1.2         2.3         6.3         0.5         75.7         0.2         71.8         21.1         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 19.8          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156         108         112         4         354         156.7         3.2         1.3         2.4         6.5         0.5         68.2         0.2         67.6         19.1         0.8         10.2         0.7         0.2           RHRC156         112         116         4         414         187.3         3.2         1.3         2.6         7.1         0.5         81.6         0.2         77.7         22.4         1.5         11.2         0.7         0.2           RHRC156         116         120         4         426         189         3.7         1.5         2.9         7.3         0.6         82.7         0.2         81.1         22.9         1.4         11.8         0.8         0.2           RHRC156         120         124         4         389         178.3         3.1         1.2         2.3         6.3         0.5         75.7         0.2         71.8         21.1         1.5         10         0.7         0.2           RHRC156         124         128         4         361         162.8         3.1         1.3         2.4         6.2         0.5         67.6         0.2         69         19.6         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 16.3          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156       112       116       4       414       187.3       3.2       1.3       2.6       7.1       0.5       81.6       0.2       77.7       22.4       1.5       11.2       0.7       0.2         RHRC156       116       120       4       426       189       3.7       1.5       2.9       7.3       0.6       82.7       0.2       81.1       22.9       1.4       11.8       0.8       0.2         RHRC156       120       124       4       389       178.3       3.1       1.2       2.3       6.3       0.5       75.7       0.2       71.8       21.1       1.5       10       0.7       0.2         RHRC156       124       128       4       361       162.8       3.1       1.3       2.4       6.2       0.5       67.6       0.2       69       19.6       1.4       10.2       0.7       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 15.2          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156     116     120     4     426     189     3.7     1.5     2.9     7.3     0.6     82.7     0.2     81.1     22.9     1.4     11.8     0.8     0.2       RHRC156     120     124     4     389     178.3     3.1     1.2     2.3     6.3     0.5     75.7     0.2     71.8     21.1     1.5     10     0.7     0.2       RHRC156     124     128     4     361     162.8     3.1     1.3     2.4     6.2     0.5     67.6     0.2     69     19.6     1.4     10.2     0.7     0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 15.3          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156     120     124     4     389     178.3     3.1     1.2     2.3     6.3     0.5     75.7     0.2     71.8     21.1     1.5     10     0.7     0.2       RHRC156     124     128     4     361     162.8     3.1     1.3     2.4     6.2     0.5     67.6     0.2     69     19.6     1.4     10.2     0.7     0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 15.9          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156 124 128 4 <b>361</b> 162.8 3.1 1.3 2.4 6.2 0.5 67.6 0.2 69 19.6 1.4 10.2 0.7 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 18.8          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 15.1<br>15.1  |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156   128   132   4   <b>1367</b>   547.5   20.7   9   10.8   33.2   3.5   251   0.9   243   65.9   16.3   42.6   4.1   1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 111.1         |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156 132 136 4 <b>761</b> 318 7.8 3.2 4.9 14.7 1.3 153.4 0.3 135.1 37.6 21.9 21 1.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 37            |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156 136 140 4 725 326.8 4.5 1.9 3.4 9.5 0.7 156.7 0.2 125 37.2 18.3 15.7 1 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 22.4          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156 140 144 4 306 117.8 3.4 1.7 1.8 5.5 0.6 61.3 0.2 49.1 13.7 22.2 7.7 0.6 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 18.4          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |
| RHRC156 144 148 4 461 197.5 3.8 1.7 2.4 6.8 0.6 103.8 0.2 75.3 22.1 14.4 10.3 0.8 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 20.1          |                |                |      |      |                 |                |     |       |     |                |     |                |     |       |     |   |     |     |         |



|         | From<br>(m) | To  | Interval | TREO       | 0-202          |                |                |                |                |                |                |                |                |                 |                |                |                |                |               |                |
|---------|-------------|-----|----------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
|         | (,          | (m) | (m)      | (ppm)      | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | La2O3<br>(ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
| RHRC156 | 148         | 152 | 4        | 1972       | 802.5          | 28.7           | 10.9           | 16.9           | 51.7           | 4.5            | 352.1          | 0.8            | 390.5          | 102.9           | 7.5            | 69.9           | 6.2            | 1.3            | 118.7         | 6.6            |
| RHRC156 | 152         | 154 | 2        | 2122       | 1043           | 6.6            | 2.4            | 7.2            | 18.9           | 1              | 505.8          | 0.3            | 349.7          | 113             | 1.5            | 35.8           | 1.7            | 0.3            | 33.8          | 1.8            |
| RHRC157 | 48          | 52  | 4        | 1421       | 689.9          | 8              | 3.9            | 5.9            | 14.5           | 1.5            | 295            | 0.5            | 219.6          | 68.7            | 27.8           | 25.6           | 1.6            | 0.5            | 55.1          | 3.2            |
| RHRC157 | 52          | 56  | 4        | 1286       | 632            | 13.1           | 6.9            | 6.5            | 18.6           | 2.5            | 228.2          | 0.9            | 178.8          | 52.1            | 29             | 24.5           | 2.4            | 0.9            | 84            | 5.4            |
| RHRC157 | 56          | 60  | 4        | 290        | 86.6           | 5.3            | 3.4            | 2.1            | 6.2            | 1.1            | 52.8           | 0.5            | 44.9           | 12.5            | 23.3           | 7.1            | 0.9            | 0.5            | 40.1          | 2.9            |
| RHRC157 | 60          | 64  | 4        | 253        | 98.3           | 2.8            | 1.4            | 1.5            | 3.9            | 0.5            | 52.3           | 0.2            | 36.4           | 10.9            | 20.7           | 5.4            | 0.5            | 0.2            | 16.3          | 1.3            |
| RHRC157 | 64          | 68  | 4        | 259        | 104.2          | 2.7            | 1.3            | 1.5            | 3.8            | 0.5            | 50.1           | 0.2            | 39.7           | 11.7            | 20.7           | 5.5            | 0.5            | 0.2            | 14.9          | 1.2            |
| RHRC157 | 68          | 72  | 4        | 773        | 368.1          | 3.7            | 1.7            | 3              | 6.7            | 0.6            | 167.5          | 0.2            | 125            | 41.1            | 20.7           | 12.6           | 0.7            | 0.2            | 19.7          | 1.4            |
| RHRC157 | 76          | 80  | 4        | 366        | 154.8          | 3.2            | 1.7            | 2              | 5              | 0.6            | 72.2           | 0.2            | 57.5           | 17.4            | 23.5           | 7.5            | 0.6            | 0.2            | 18.5          | 1.4            |
| RHRC157 | 88          | 92  | 4        | 466        | 196.4          | 4.3            | 2              | 2.8            | 7.2            | 0.7            | 95.1           | 0.2            | 77.7           | 22.9            | 19.3           | 11.3           | 0.9            | 0.3            | 22.6          | 1.6            |
| RHRC157 | 92          | 96  | 4        | 666        | 288.3          | 5.9            | 2.4            | 4.1            | 10.4           | 1              | 133.9          | 0.3            | 116.7          | 34.1            | 19             | 16.5           | 1.2            | 0.3            | 29.8          | 1.8            |
| RHRC157 | 96          | 100 | 4        | 1017       | 469.9          | 5.6            | 2.3            | 4.8            | 11.4           | 0.9            | 224.6          | 0.3            | 174.4          | 53.3            | 15.6           | 20.7           | 1.2            | 0.3            | 30.2          | 1.7            |
|         | 112         | 116 | 4        | 384        | 159            | 3.5            | 1.7            | 2.2            | 5.5            | 0.6            | 74.4           | 0.2            | 64.6           | 19              | 23.3           | 8.9            | 0.7            | 0.2            | 18.9          | 1.4            |
|         | 116         | 120 | 4        | 444        | 187            | 3.6            | 1.6            | 2.7            | 6.4            | 0.6            | 86.1           | 0.2            | 77.6           | 22.2            | 23.5           | 10.6           | 0.7            | 0.2            | 19.6          | 1.3            |
|         | 120         | 124 | 4        | 812        | 369.9          | 4.5            | 1.9            | 4.1            | 9.2            | 0.7            | 166.9          | 0.2            | 146.4          | 44              | 21.3           | 17.4           | 1              | 0.2            | 23            | 1.4            |
|         | 124         | 128 | 4        | 778        | 341.5          | 5.3            | 2.2            | 4.6            | 10.6           | 0.9            | 152.9          | 0.2            | 143.9          | 41.2            | 25.2           | 19             | 1.1            | 0.3            | 27.4          | 1.7            |
|         | 128         | 132 | 4        | 973        | 452.8          | 4.7            | 2              | 4.4            | 9.8            | 0.8            | 204.3          | 0.2            | 170.1          | 52.3            | 25.3           | 19             | 1              | 0.3            | 24.3          | 1.6            |
|         | 132         | 136 | 4        | 488        | 210            | 3.6            | 1.7            | 2.7            | 6.5            | 0.6            | 97.7           | 0.2            | 84.9           | 25              | 22.7           | 11             | 0.7            | 0.2            | 19.4          | 1.4            |
|         | 136<br>140  | 140 | 4        | 512        | 221.2          | 3.8            | 1.7            | 3              | 6.8            | 0.6            | 98.6           | 0.2            | 92             | 26.6            | 22.5           | 12             | 0.8            | 0.3            | 20.4          | 1.3            |
|         | 144         | 144 | 4        | 544<br>688 | 237.1<br>307.9 | 3.8<br>4.2     | 1.7            | 3.1            | 6.9<br>8.1     | 0.6            | 110<br>137.9   | 0.2            | 94.8           | 28.2<br>36.4    | 21.5           | 12.2<br>15     | 0.8            | 0.2            | 21.5          | 1.4            |
|         | 144         | 152 | 4        | 627        | 280.7          | 4.1            | 1.8            | 3.4            | 7.5            | 0.7            | 128.8          | 0.2            | 108.5          | 32.6            | 21.6           | 13.1           | 0.9            | 0.3            | 21.7          | 1.4            |
|         | 152         | 154 | 2        | 672        | 302.1          | 4.1            | 1.7            | 3.5            | 7.7            | 0.7            | 141.7          | 0.2            | 116.1          | 35.1            | 19.6           | 14.1           | 0.8            | 0.2            | 22.7          | 1.4            |
| RHRC158 | 36          | 40  | 4        | 556        | 101.9          | 4.5            | 2              | 4              | 8.8            | 0.7            | 170.9          | 0.3            | 143            | 43.4            | 36             | 16.4           | 1              | 0.3            | 21.6          | 1.5            |
| RHRC158 | 40          | 44  | 4        | 6087       | 1204           | 54.1           | 21.1           | 48.3           | 113.6          | 8.6            | 1958           | 2              | 1633           | 470             | 56             | 198            | 11.8           | 2.5            | 292.4         | 13.3           |
| RHRC158 | 44          | 48  | 4        | 5961       | 1164           | 66.3           | 29             | 51.2           | 129.7          | 11.3           | 1806           | 3.2            | 1576           | 424.3           | 45.2           | 195.9          | 13.9           | 3.7            | 420.8         | 20.8           |
| RHRC158 | 48          | 52  | 4        | 1949       | 317.3          | 24             | 11.4           | 16.8           | 45.6           | 4.3            | 626.5          | 1.4            | 496.4          | 134.8           | 31.3           | 62.4           | 5              | 1.5            | 161.6         | 9.1            |



| Hole ID | From<br>(m) | To<br>(m) | Interval<br>(m) | TREO<br>(ppm) | Ce2O3<br>(ppm) | Dy2O3<br>(ppm) | Er2O3<br>(ppm) | Eu2O3<br>(ppm) | Gd2O3<br>(ppm) | Ho2O3<br>(ppm) | La2O3<br>(ppm) | Lu2O3<br>(ppm) | Nd2O3<br>(ppm) | Pr6O11<br>(ppm) | Sc2O3<br>(ppm) | Sm2O3<br>(ppm) | Tb4O7<br>(ppm) | Tm2O3<br>(ppm) | Y2O3<br>(ppm) | Yb2O3<br>(ppm) |
|---------|-------------|-----------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| RHRC158 | 52          | 56        | 4               | 1876          | 339.4          | 22.4           | 10.6           | 15.3           | 43.4           | 4.1            | 602.1          | 1.1            | 445.7          | 119.2           | 28.8           | 55.6           | 4.6            | 1.3            | 175.6         | 7.1            |
| RHRC158 | 56          | 60        | 4               | 1166          | 611.3          | 6              | 2.9            | 5.2            | 11.7           | 1.1            | 213            | 0.4            | 170.1          | 51.4            | 23.5           | 20.5           | 1.3            | 0.4            | 45.5          | 2.2            |
| RHRC158 | 60          | 64        | 4               | 1205          | 564.9          | 7.1            | 3.2            | 6              | 14.8           | 1.2            | 251.5          | 0.4            | 199.1          | 59.9            | 16.1           | 23.8           | 1.6            | 0.4            | 52.6          | 2.4            |
| RHRC158 | 64          | 68        | 4               | 952           | 424.4          | 6.3            | 2.8            | 4.9            | 12.2           | 1.1            | 207.9          | 0.3            | 159.1          | 49.3            | 14.1           | 19.2           | 1.3            | 0.4            | 46.4          | 2              |
| RHRC158 | 68          | 72        | 4               | 736           | 330.8          | 5.1            | 2.1            | 4.2            | 10.7           | 0.9            | 148.5          | 0.3            | 136.1          | 40.4            | 1.8            | 17.6           | 1.1            | 0.3            | 34.6          | 1.5            |
| RHRC158 | 72          | 76        | 4               | 549           | 242.6          | 3.9            | 1.4            | 3.5            | 8.2            | 0.6            | 109.1          | 0.2            | 108.8          | 31.4            | 1.7            | 14.5           | 0.9            | 0.2            | 21            | 1.1            |

**Table 5**. All REO assay results >250ppm TREO



#### **About Kairos Minerals**

Kairos Minerals (ASX:KAI) owns 100% of the flagship 1.6 Mozs **Mt York Gold Project** that was partially mined by Lynas Gold NL between 1994 and 1998. Kairos has recognised that the resource has significant potential to grow further from its current 1.62 Moz base with significant exploration potential existing within the Mt York project area. Pre-feasibility work will progress rapidly underpinned by the resource expansion work that will collect important information for metallurgical testwork, mining and process engineering to determine viability and optimal pathway to develop a sustainable, long-lived mining project. Current resources at a 0.5 g/t Au cutoff grade above 325m depth are shown in the table below.

|              | Iı     | ndicate | d      |        | Inferred |        | Total  |       |        |  |
|--------------|--------|---------|--------|--------|----------|--------|--------|-------|--------|--|
| Deposit      | Tonnes | Au      | Ounces | Tonnes | Au       | Ounces | Tonnes | Au    | Ounces |  |
|              | (MT)   | (g/t)   | (kozs) | (MT)   | (g/t)    | (kozs) | (MT)   | (g/t) | (kozs) |  |
| Main Trend   | 20.25  | 1.06    | 690    | 22.83  | 0.95     | 697    | 43.08  | 1.00  | 1385   |  |
| Iron Stirrup | 1.28   | 1.72    | 70     | 0.71   | 1.54     | 35     | 1.99   | 1.66  | 106    |  |
| Old Faithful | 2.17   | 1.07    | 75     | 2      | 0.81     | 52     | 4.17   | 0.95  | 127    |  |
| Total        | 23.7   | 1.10    | 835    | 25.54  | 0.95     | 784    | 49.24  | 1.02  | 1618   |  |

Kairos has recently discovered spodumene-bearing pegmatites adjacent to the Mt York Gold Project and is evaluating their potential to become part of a value-adding lithium project into the future.

Kairos's 100%-owned Roe Hills Project, located 120km east of Kalgoorlie in WA's Eastern Goldfields, comprises an extensive tenement portfolio where the Company's exploration work has confirmed the potential for significant discoveries of high-grade gold, nickel and cobalt mineralization. Kairos has also discovered a 2,800m long Li-Cs-Rb soil anomaly in an exciting and emerging lithium province that will be drill-tested.

This announcement has been authorised for release by the Board.

Peter Turner Zane Lewis
Managing Director Non Executive Director

#### **For Investor Information please contact:**

Paul Armstrong – Read Corporate 0421 619 084

#### **COMPETENT PERSON STATEMENT:**

The information in this report that relates to Exploration Results is based on information compiled and reviewed by Mr Mark Falconer, who is a full-time employee of Kairos Minerals Ltd and who is also a Member of the Australian Institute of Geoscientists (AIG). Mr Falconer has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Falconer has consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.



# Appendix A - JORC Code, 2012 Edition – Table 1

### **Section 1 Sampling Techniques and Data**

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques      | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Sampling was undertaken using reverse circulation (RC) drilling.</li> <li>All drilling and sampling was undertaken using industry standard methods.</li> <li>RC drilling depths were monitored by the driller using 1m depth intervals calibrated and marked on the drilling equipment.  Sample lengths were also verified by Kairos personnel through visual assessment of individual sample volumes.</li> <li>RC holes were sampled on a 1m basis with samples collected in calico bags from a cyclone-mounted cone splitter located at the drill rig.</li> <li>4m composite samples were collected by scoop from individual meter intervals.</li> <li>Sampling was carried out under Kairos Minerals sampling protocols and QAQC procedures. See further details below.</li> <li>The samples are considered representative and appropriate for the methods of drilling used.</li> <li>4m composite samples were routinely dispatched for Lithium and Multi-element analysis, with selected intervals of 1m samples submitted where pegmatite or other geological intervals were recorded along with intervals of surrounding country rock.</li> <li>4m composite samples were assayed for gold by fire assay</li> </ul> |
| Drilling<br>techniques   | • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RC drilling was conducted using a 5 ½ inch bit and face sampling hammer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>RC samples were visually assessed for recovery.</li> <li>The majority of RC samples were dry. Some deeper drillholes encountered water and efforts were made by the drillers to minimise the amount of water in the sample and to maximise recovery.</li> <li>Recovery of RC samples is considered good, with some minor sample loss near the very</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>top of some holes.</li> <li>RC samples were collected directly from a cone splitter on the drill rig cyclone and are considered representative in nature.</li> <li>No sample bias is observed.</li> <li>All RC chips were geologically logged by company geologists using the Kairos Minerals logging scheme and were entered in to the companies acQuire database.</li> <li>Logging of RC chips records colour, lithology, grain size, structure, mineralogy, alteration, weathering and various other features of the samples.</li> <li>All holes were logged in full.</li> <li>All RC chips were photographed in labelled chip trave.</li> </ul>                                        |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>chip trays.</li> <li>RC samples were sampled using a cone splitter mounted on the drill rig cyclone, with an average 2.0kg to 3.0kg sample collected directly into a numbered calico bag. &gt;95% of samples were collected dry</li> <li>The quality of RC samples was ensured through monitoring of sample volumes and by regular cleaning of the cyclone and cone splitter on the drill rig.</li> <li>Samples were prepared at Intertek Genalysis in Perth. Samples were dried, crushed and then pulverised to a pulp with 85% passing &lt;75 µm. A sub-sample of approximately 200g was retained.</li> <li>Sample sizes are considered appropriate for the material sampled.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                             | <ul> <li>All samples were analysed by Intertek Genalysis in Perth.</li> <li>4m composites were submitted for multi- element analysis using 4-acid digest with ICP- MS and ICP-OES finish.</li> <li>Intervals with identified pegmatites and their immediate country rock had 1m samples submitted for multi-element analysis using fusion digest which is considered a total digestion method.</li> <li>Intervals identified as containing elevated rare earth elements in 4m composites at Black Cat have been re-submitted for fusion digest multi-element analysis.</li> <li>Selected 4m composites were also submitted for 25g fire assay for gold, followed by an ICP-OES finish</li> </ul>    |



| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The analysis methods are considered appropriate for the nature of the material and mineralisation.</li> <li>Certified standards and blanks were regularly inserted into the sample sequence at a minimum rate of 1:33 for standards and 1:33 for blanks to assess the accuracy of the analysis method.</li> <li>Duplicate samples were collected at the rig and submitted at a rate of 1:33 samples.</li> <li>The laboratory performed regular performance checks through analysis of laboratory standards, repeats, and control blanks.</li> <li>QAQC performance was monitored by Kairos staff with action taken with the laboratory if required.</li> <li>Acceptable levels of accuracy and precision have been established through monitoring and assessment of QAQC performance.</li> <li>Selected samples were submitted to Microanalysis in Perth for semi-quantitative XRD analysis to determine pegmatite mineralogy</li> </ul>                                                      |
| Verification of sampling and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>Significant mineralised intersections were checked by the Exploration Manager and validated against the logging and RC chips. Additional checks were performed by other members of the Kairos geology team.</li> <li>No twinned drillholes were completed for this program.</li> <li>All assay and geological data is stored in an electronic database hosted by acQuire and managed by the company's database consultant.</li> <li>Primary laboratory data is emailed directly to the company's database consultant for upload directly into the company database.</li> <li>Results are checked and verified by company geologists.</li> <li>Assay intersections are reported on a lengthweighted basis.</li> <li>Lithium results are reported as Li2O%, with Li ppm coverted to Li2O% using the standard conversion factor of 2.153.</li> <li>Multi-element data for rare earth elements have been converted to stoichiometric oxides using element-to-stoichiometric conversion</li> </ul> |

factors listed in the table below:



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                     | Comme | ntary                                                                                                                                                |                                                                                                                                  |                                                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Element ppm                                                                                                                                          | Conversion Factor                                                                                                                | Oxide Form                                                                                  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Ce                                                                                                                                                   | 1.1713                                                                                                                           | CeO <sub>2</sub>                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Dy                                                                                                                                                   | 1.1477                                                                                                                           | Dy <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Er                                                                                                                                                   | 1.1435                                                                                                                           | Er <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Eu                                                                                                                                                   | 1.1579                                                                                                                           | Eu <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Gd                                                                                                                                                   | 1.1526                                                                                                                           | Gd <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Но                                                                                                                                                   | 1.1455                                                                                                                           | Ho <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | La                                                                                                                                                   | 1.1728                                                                                                                           | La <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Lu                                                                                                                                                   | 1.1371                                                                                                                           | Lu <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Nd                                                                                                                                                   | 1.1664                                                                                                                           | Nd <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Pr                                                                                                                                                   | 1.1703                                                                                                                           | Pr <sub>6</sub> O <sub>11</sub>                                                             |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Sc                                                                                                                                                   | 1.5338                                                                                                                           | Sc <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Sm                                                                                                                                                   | 1.1596                                                                                                                           | Sm <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Tb                                                                                                                                                   | 1.151                                                                                                                            | Tb <sub>4</sub> O <sub>7</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Tm                                                                                                                                                   | 1.1421                                                                                                                           | Tm <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Υ                                                                                                                                                    | 1.2699                                                                                                                           | Y <sub>2</sub> O <sub>3</sub>                                                               |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Yb                                                                                                                                                   | 1.1387                                                                                                                           | Yb <sub>2</sub> O <sub>3</sub>                                                              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           | •     | Rare earth ox                                                                                                                                        | ide is an industry                                                                                                               | accepted form                                                                               |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                      | rare earth values                                                                                                                |                                                                                             |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           | •     | The following                                                                                                                                        | calculation is use                                                                                                               | ed for Total                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       | Rare Earth Ox                                                                                                                                        | ide (TREO):                                                                                                                      |                                                                                             |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                      | + Dy <sub>2</sub> O <sub>3</sub> + Er <sub>2</sub> O <sub>3</sub> +                                                              | Eu <sub>2</sub> O <sub>3</sub> + Gd <sub>2</sub> O <sub>3</sub>                             |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                      | $O_3 + Lu_2O_3 + Nd_2O_3$                                                                                                        |                                                                                             |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                      | 3 + Tb <sub>4</sub> O <sub>7</sub> + Tm <sub>2</sub> O <sub>3</sub>                                                              |                                                                                             |
| data points                                                         | <ul> <li>locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                             |       | +/- 5m in both<br>Downhole such<br>holes using a<br>survey instruct<br>recorded ever<br>All location da<br>Zone 51.<br>Topographic<br>elevation mode | dheld GPS, with a neasting and nor rveys were complement with measury 5m at a is recorded in control is through a on 30m centers | thing.<br>leted on all dril<br>Gyroscope<br>rements<br>GDA94 MGA<br>n a digital<br>regional |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been</li> </ul> | •     | 100m spaced<br>from 160m to<br>The data space<br>considered ap<br>pass explorat<br>Downhole sai                                                      | cing and distribut<br>opropriate and su                                                                                          | rses ranging<br>ion is<br>ıfficient for firs<br>tted on 1m                                  |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>applied.</li> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key</li> </ul>                                                                 | •     | perpendicular<br>anomalism ar<br>surface where                                                                                                       | riented approxim<br>r to the strike of e<br>nd mapped pegm<br>e possible.<br>on of key structur                                  | existing<br>natites at                                                                      |



| Criteria             | JORC Code explanation                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | and mineralisation is not fully understood at this stage                                                                                                                                                                                                                                                             |
| Sample<br>security   | The measures taken to ensure sample security.                                                                              | <ul> <li>All samples were collected in the field at the project site in number-coded calico bags and placed within secure, labelled polyweave bags by company field personnel.</li> <li>All samples were delivered directly to Intertek Genalysis in Kalgoorlie for delivery to Perth for final analysis.</li> </ul> |
| Audits or<br>reviews | <ul> <li>The results of any audits or reviews of<br/>sampling techniques and data.</li> </ul>                              | <ul> <li>QAQC data was reviewed internally.</li> <li>No external QAQC reviews or audits have been conducted.</li> </ul>                                                                                                                                                                                              |

## **Section 2 Reporting of Exploration Results**

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Roe Hills project consists of nineteen granted Exploration Licenses: E28/1935, E28/2117, E28/2118, E28/2548, E28/2585, E28/2593-E28/2597, P28/1292-P28/1300 inclusive.</li> <li>E28/2585 partially overlaps with Hampton Location 16 privately owned land north of the trans-australian railway line. The mineral rights to the upper 45.72 metres of Location 16 belong to the private land owners.</li> <li>Kairos is not aware of any existing impediments nor of any potential impediments which may impact ongoing exploration and development activities at the project site.</li> </ul> |
| Exploration<br>done by other<br>parties          | <ul> <li>Acknowledgment and appraisal of<br/>exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Broad reconnaissance exploration for gold<br/>has been conducted on the northern and<br/>western parts of tenement E28/2585 in the<br/>past by Poseidon Exploration (1990),<br/>Normandy Exploration (1995) and Integra<br/>Mining (2009) in the form of shallow<br/>RAB/Aircore drilling.</li> </ul>                                                                                                                                                                                                                                                                                              |
| Geology                                          | Deposit type, geological setting and style of<br>mineralisation.                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Regional Geology</li> <li>The Roe Hills project lies across granite-greenstones of the Archean Yilgarn         Craton, with the local geology at Roe Hills         consisting of a north-south trending maficultramafic sequence intruded by granites.</li> <li>The mineralisation targets are intrusion/shear zone-hosted Au deposits, spodumene-bearing LCT pegmatite deposits (lithium), and granite and syenite</li> </ul>                                                                                                                                                                     |



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>Information                                                       | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>related rare earth element mineralisation.</li> <li>All drill hole location, orientation and hole length information material to the understanding of the exploration results is provided in the tables and figures included within the body of this announcement.</li> <li>Information from historic holes drilled by Kairos Minerals at Roe Hills can be found in previous ASX releases.</li> <li>No drill hole information from the reported program was excluded from this release.</li> </ul>                                                                                        |
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                       | <ul> <li>Results are reported as down hole length weighted averages</li> <li>Significant intercepts for Lithium ar erported using a 0.1% Li2O minimum cutoff grade</li> <li>Significant results for gold are reported using a 0.3g/t gold minimum cutoff grade.</li> <li>Significant results for rare earth elements are reported using a 500ppm TREO minimum cut-off grade</li> <li>Reported intercepts for TREO may include up to 12m of internal dilution below the 500ppm TREO minimum cut off grade.</li> <li>No top cuts have been applied to the reporting of the assay results.</li> </ul> |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                   | <ul> <li>All mineralisation widths for exploration holes are reported as down hole lengths.</li> <li>True widths of mineralisation are not known at this stage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Diagrams  Balanced reporting                                                    | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> <li>Where comprehensive reporting of all Exploration Results is not practicable,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Refer to Figures and Tables provided in the body of this announcement.</li> <li>All exploration results received from the drill program at the time of data</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| reporting                                                                       | Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drill program at the time of data compilation for this announcement have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                    |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                         | <ul><li>been been reported.</li><li>The information reported in considered fair, balanced, and provided in context.</li></ul>                                                                                                                                 |
| Other<br>substantive<br>exploration data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>All meaningful and material exploration<br/>data has been included in the body of this<br/>document.</li> </ul>                                                                                                                                      |
| Further work                             | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                     | <ul> <li>Drilling is ongoing at Roe Hills and<br/>expected to be completed within October.<br/>A comprehensive prospect assessment will<br/>be undertaken once all results have been<br/>received prior to future work programs<br/>being planned.</li> </ul> |