

ASX ANNOUNCEMENT

9 February 2023

Mt York Gold Project, Pilbara

Outstanding intersections below 1.1Moz Resource point to further inventory growth

Latest hits include 5m at 4.25 g/t, 7m at 3.35 g/t and 8m at 3.67 g/t

Highlights

- Drilling at Mt York has returned consistent high-grade intersections over significant widths below current resource
- Results received for 33 of 46 drill holes; Remaining results expected in March
- The results pave the way for further increases in the 1.1Moz resource

Significant Results

Breccia Hill

- **15m @ 1.47 g/t Au** from 66m incl **5m @ 3.63 g/t Au** from 73m (KMYC207)
- **7m @ 3.35 g/t Au** from 172m (KMYD027)
- **12m @ 1.54 g/t Au** from 123m incl **4m @ 2.96 g/t Au** from 130m (KMYD028)
- **11m @ 2.86 g/t Au** from 185m incl **8m @ 3.67 g/t Au** from 185m (KMYD039)

Gossan Hill

- **23m @ 1.47 g/t Au** from 148m incl **7m @ 3.18 g/t Au** from 148m (KMYC247)
- **10m @ 2.49 g/t Au** from 64m incl **5m @ 4.25 g/t Au** from 65m (KMYC262)
- **11m @ 1.78 g/t Au** from 177m incl **4m @ 2.67 g/t Au** from 184m (KMYD055)

The Gap

80m @ 0.52 g/t Au from 129m incl 2m @ 1.92 g/t Au from 145m; 4m @ 1.62 g/t
 Au from 164m & 2m @ 1.75 g/t Au from 194m (KMYD024)

Kairos Managing Director, Dr Peter Turner said: "The latest drilling has been highly successful, intersecting high-grade mineralisation over significant widths below the current 1.1Moz Resource.

"The results support our view that Mt York is a big system in a Tier-1 location with consistent mineralisation.

"More assays are pending and we are confident that the resource will continue to grow.

"In parallel with our strategy to increase the inventory, we are progressing preparations for project development with Mining Lease Applications already submitted".

Kairos Minerals Ltd (ASX: KAI) is pleased to report strong results of 33 drill holes at the 100%-owned Mt York Project in the Pilbara.

Kairos completed **46 drill holes** for **11,013.6m** of drilling between September and December 2022 with the aim of 1) drilling beyond the current resource model, especially at depth to increase resources and 2) infill drilling within the resources to increase confidence in the resource category along the contiguous **Main Trend** (Main Hill – The Gap – Breccia Hill – Gossan Hill).

Diamond core drilling accounted for 5,945.6m or **54%** of the total drilling programme and has assisted in the collection of valuable data for geological modelling and to determine bulk densities for the next round of resource estimation. Three additional holes were drilled but not sampled – two holes were drilled as pre-collars awaiting diamond tails and one diamond hole at Main Hill (KMYD070) was abandoned due to bad ground. Results for 33 of the 46 holes are reported here, results for the remaining 13 holes are pending and expected in February and March.

The current mineral resource estimate for the project stands at **28.01 Mt @ 1.23 g/t Au** for **1,104,000 Mozs Au**¹ including 13.93 Mt @ 1.3 g/t Au for 581,000 ounces (Indicated) and 14.08 Mt @ 1.15 g/t Au for 523,000 ounces (Inferred). The Kairos team are confident that these new results, coupled with bulk density measurements of selected core samples, will support a significant increase in the mineral resource.

The current results demonstrate consistent and wide zones of mineralisation, often with intervals of higher-grade gold mineralisation above the current global resource grade of 1.23 g/t Au within lower grade zones. This drilling has 1) tested extensions of mineralisation beneath historic drilling for new potential additions to mineral resources and 2) has tested

¹ See KAI ASX announcement dated 30 August 2022 entitled 'Gold resource increases 26% to 1.1 Moz'

areas with low-confidence resources (unclassified or inferred categories) to increase the amount of high-confidence resources (measured and indicated) in preparation for reserve estimation.

The holes are shown on the drill plan (**Figure 1**) and results shown on the long-section (**Figure 2**) representing some of the deepest drilling along the Mt York Main Trend, especially along the eastern half of the deposit (Breccia and Gossan Hills) where historic drilling was relatively shallow (<150m deep).

Mineralisation at Main Hill, The Gap and Breccia Hill dip steeply to the SW, SSW & S respectively (**Figure 3**) and forms an arcuate trend towards the east at Gossan Hill (**Figure 1**). Interestingly, the new drilling at depth at Gossan Hill confirms that the mineralisation shallows from an otherwise steep south dip closer to surface (**Figure 4**). Main Hill mineralisation currently remains relatively undrilled due to challenges for drill-rig access. Hole KMYD071 was drilled into Main Hill and a 15.4m hangingwall zone of high-sulphides was reported² - results are pending, expected in March 2023.

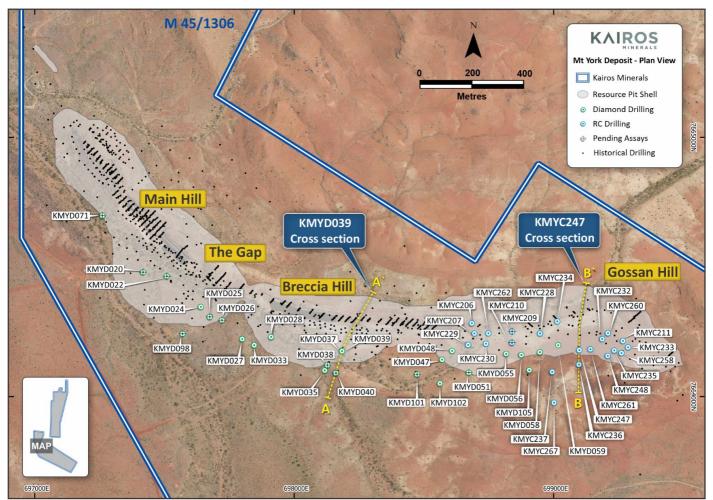

The significant results are shown in **Table 1** for all holes.

Figure 1 shows the drill plan, **Figure 2** the longsection of Main trend and **Figures 3 & 4** are cross-sections showing the new results in relation to historic drilling.

.

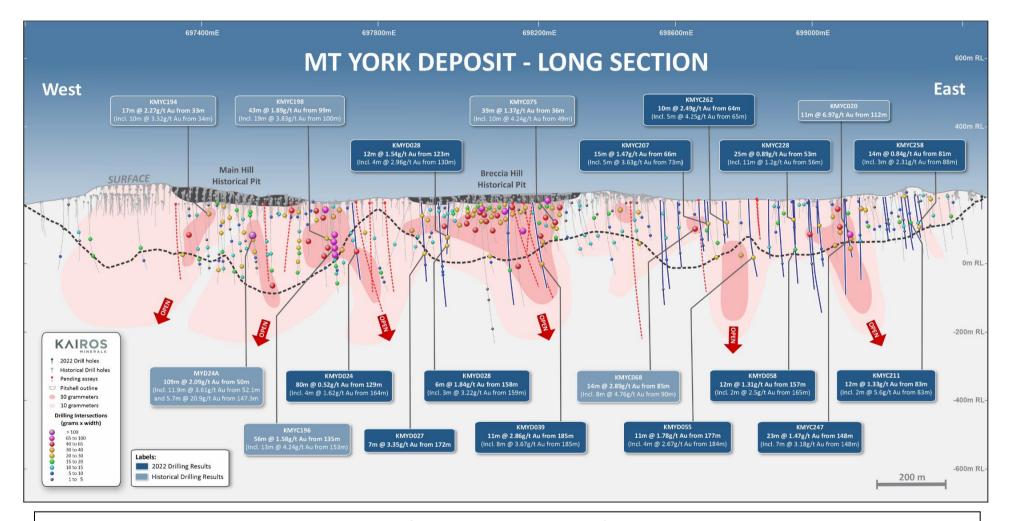

² See KAI press announcement dated 10 October 2022 entitled 'Drilling Update at Mt York, Pilbara WA'

Figure 1. Drill plan of the Main Trend showing historic (black dots) and new holes. Cross-section A-A' as **Figure 3**. Cross-section B-B' is shown as **Figure 4**.

Figure 2. Longsection showing gramme-metres (grade x downhole widths) of the Mt York Main Trend with current and historic drilling intercepts. Note the longsection has been constructed using maximum internal waste of 5m. No differentiation between hangingwall, footwall or internal Banded Iron Formation (BIF) lodes is made.

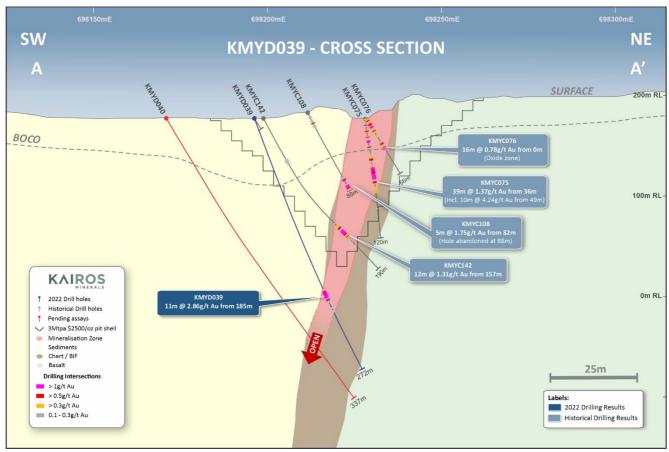
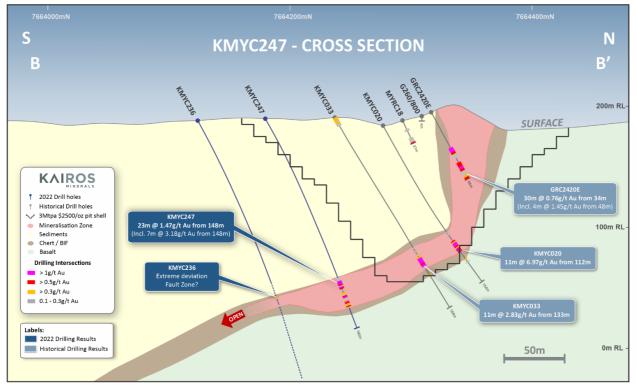



Figure 3. Breccia Hill Cross-section @KMYD039 & KMYD040. See Fig 1 for section location.

Figure 4. Gossan Hill Cross-section @KMYC247 and KMYC236. See **Fig 1** for section location.

		Fastina	N a wila in a	DI	۸ –:	Din	Hala Danath	Hala	F	Т-	latam ral	Crada
HoleID	Prospect	Easting	Northing	RL	Azi	Dip	HoleDepth	Hole	From	To	Interval	Grade
I/M//0000	Danasia I IIII	MGA94	MGA94	(m)	Degrees	Degrees	(m)	Туре	(m)	(m)	(m)	g/t Au
KMYC206	Breccia Hill	698684.29	7664283.42	185.42	0	-60	84.0	RC	66		NSA	4.47
KMYC207	Breccia Hill	698694.24	7664243.83	179.99	0	-60 -60	132.0	RC	66 73	81 78	15 5	1.47 3.63
including	Breccia Hill	698694.24	7664243.83	179.99	0		132.0	RC	73		_	
KMYC209	Gossan Hill	698839.65	7664251.62	185.19	0	-60	114.0	RC			ys Pending	
KMYC210	Gossan Hill	698839.10	7664207.67	188.66	0	-60	142.0	RC			ys Pending	í
KMYC211	Gossan Hill	699266.90	7664214.98	196.96	45	-60	142.0	RC	52	62	10	0.71
including	Gossan Hill	699266.90	7664214.98	196.96	45	-60	142.0	RC	59	60	1	3.22
KMYC211	Gossan Hill	699266.90	7664214.98	196.96	45	-60	142.0	RC	71	73	2	0.63
KMYC211	Gossan Hill	699266.90	7664214.98	196.96	45 45	-60 -60	142.0	RC RC	83 83	95 85	12 2	1.33 5.60
including	Gossan Hill	699266.90	7664214.98	196.96	45		142.0					
KMYC228	Gossan Hill	698947.37	7664244.05 7664244.05	185.11	0	-60	148.0	RC RC	53 56	78	25	0.89
including	Gossan Hill	698947.37		185.11	0	-60	148.0			67	11	1.20
KMYC228	Gossan Hill	698947.37	7664244.05	185.11	0	-60 65	148.0	RC RC	115	122	3	2.04
KMYC229 including	Breccia Hill Breccia Hill	698670.06 698670.06	7664199.64 7664199.64	178.38 178.38	0	-65 -65	160.0 160.0	RC	115 115	123 117	8 2	0.67 1.88
KMYC229	Breccia Hill	698670.06	7664199.64	178.38	0	-65	160.0	RC	133	147	14	0.63
including	Breccia Hill	698670.06	7664199.64	178.38	0	-65	160.0	RC	140	147	7	0.03
KMYC229	Breccia Hill	698670.06	7664199.64	178.38	0	-65	160.0	RC	154	155	1	1.22
KMYC230	Gossan Hill	698738.96	7664204.27	180.41	0	-60	144.0	RC	104	118	14	0.31
KMYC232	Gossan Hill	699186.71	7664222.28	192.13	45	-60	142.0	RC	82	85	3	0.87
KMYC232	Gossan Hill	699186.71	7664222.28	192.13	45	-60	142.0	RC	91	96	5	0.38
KMYC232	Gossan Hill	699186.71	7664222.28	192.13	45	-60	142.0	RC	105	107	2	2.46
KMYC232	Gossan Hill	699286.67	7664190.48	196.85	45	-60	112.0	RC	57	60	3	0.70
including	Gossan Hill	699286.67	7664190.48	196.85	45	-60	112.0	RC	58	59	1	1.45
KMYC234	Gossan Hill	699013.65	7664290.23	181.47	0	-60	108.0	RC	9	25	16	0.53
KMYC235	Gossan Hill	699233.44	7664178.14	193.04	45	-55	164.0	RC	33	35	2	0.53
KMYC235	Gossan Hill	699233.44	7664178.14	193.04	45	-55 -55	164.0	RC	79	84	5	0.84
KMYC235	Gossan Hill	699233.44	7664178.14	193.04	45	-55	164.0	RC	97	100	3	1.35
including	Gossan Hill	699233.44	7664178.14	193.04	45	-55	164.0	RC	98	99	1	2.73
KMYC236	Gossan Hill	699097.20	7664123.80	188.10	0	-60	322.0	RC	161	162	1	0.39
KMYC237	Gossan Hill	698994.18	7664095.68	186.84	0	-60	300.0	RC	211	215	4	0.67
including	Gossan Hill	698994.18	7664095.68	186.84	0	-60	300.0	RC	213	214	1	1.57
KMYC237	Gossan Hill	698994.18	7664095.68	186.84	0	-60	300.0	RC	221	223	2	0.39
KMYC247	Gossan Hill	699098.71	7664179.61	189.69	0	-60	190.0	RC	148	171	23	1.47
including	Gossan Hill	699098.71	7664179.61	189.69	0	-60	190.0	RC	148	155	7	3.18
including	Gossan Hill	699098.71	7664179.61	189.69	0	-60	190.0	RC	162	163	1	2.50
including	Gossan Hill	699098.71	7664179.61	189.69	0	-60	190.0	RC	166	167	1	4.09
KMYC248	Gossan Hill	699208.21	7664157.29	193.00	45	-65	166.0	RC	69	70	1	1.81
KMYC248	Gossan Hill	699208.21	7664157.29	193.00	45	-65	166.0	RC	95	97	2	0.41
KMYC248	Gossan Hill	699208.21	7664157.29	193.00	45	-65	166.0	RC	107	108	1	1.20
KMYC258	Gossan Hill	699261.05	7664168.00	194.71	45	-60	142.0	RC	75	76	1	0.99
KMYC258	Gossan Hill	699261.05	7664168.00	194.71	45	-60	142.0	RC	81	95	14	0.84
including	Gossan Hill	699261.05	7664168.00	194.71	45	-60	142.0	RC	88	91	3	2.31
KMYC260	Gossan Hill	699209.00	7664245.00	193.00	45	-60	118.0	RC	71	74	3	0.39
KMYC260	Gossan Hill	699209.00	7664245.00	193.00	45	-60	118.0	RC	86	91	5	0.94
including	Gossan Hill	699209.00	7664245.00	193.00	45	-60	118.0	RC	87	88	1	2.63
KMYC261	Gossan Hill	699141.22	7664182.89	191.11	0	-60	276.0	RC	135	149	14	0.86

					1				1		INERA	
HoleID	Prospect	Easting	Northing	RL	Azi	Dip	HoleDepth	Hole	From	То	Interval	Grade
าเดเษเบ	r rospect	MGA94	MGA94	(m)	Degrees	Degrees	(m)	Туре	(m)	(m)	(m)	g/t Au
including	Gossan Hill	699141.22	7664182.89	191.11	0	-60	276.0	RC	142	144	2	3.30
KMYC261	Gossan Hill	699141.22	7664182.89	191.11	0	-60	276.0	RC	157	160	3	0.45
KMYC262	Gossan Hill	698748.10	7664244.33	179.12	0	-60	118.0	RC	38	45	7	0.44
including	Gossan Hill	698748.10	7664244.33	179.12	0	-60	118.0	RC	44	45	1	1.01
KMYC262	Gossan Hill	698748.10	7664244.33	179.12	0	-60	118.0	RC	64	74	10	2.49
including	Gossan Hill	698748.10	7664244.33	179.12	0	-60	118.0	RC	65	70	5	4.25
KMYC262	Gossan Hill	698748.10	7664244.33	179.12	0	-60	118.0	RC	80	81	1	0.53
KMYC267	Gossan Hill	699001.00	7663977.00	184.00	0	-60	366.0	RC	255	256	1	0.32
KMYD020	Main Hill	697417.43	7664479.95	175.88	45	-60	267.8	DD		Assay	/s Pending	9
KMYD022	Main Hill	697508.67	7664464.33	174.97	30	-60	234.2	DD		Assay	/s Pending	7
KMYD024	The Gap	697640.02	7664346.32	176.72	45	-60	276.1	DD	129	209	80	0.52
including	The Gap	697640.02	7664346.32	176.72	45	-60	276.1	DD	145	147	2	1.92
and	The Gap	697640.02	7664346.32	176.72	45	-60	276.1	DD	164	168	4	1.62
and	The Gap	697640.02	7664346.32	176.72	45	-60	276.1	DD	194	196	2	1.75
KMYD025	The Gap	697674.11	7664307.76	176.96	45	-60	303.1	DD		Assay	s Pending	7
KMYD026	The Gap	697721.57	7664294.86	177.86	45	-60	305.6	DD		Assa	/s Pending	7
KMYD027	Breccia Hill	697799.42	7664222.19	179.56	45	-60	275.7	DD	119	124	5	0.44
KMYD027	Breccia Hill	697799.42	7664222.19	179.56	45	-60	275.7	DD	172	179	7	3.35
KMYD027	Breccia Hill	697799.42	7664222.19	179.56	45	-60	275.7	DD	191	194	3	0.48
KMYD027	Breccia Hill	697799.42	7664222.19	179.56	45	-60	275.7	DD	214	221	7	0.72
lincluding	Breccia Hill	697799.42	7664222.19	179.56	45	-60	275.7	DD	214	217	3	1.07
KMYD028	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	123	135	12	1.54
including	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	130	134	4	2.96
KMYD028	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	144	151	7	0.40
including	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	144	145	1	1.17
KMYD028	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	158	164	6	1.84
including	Breccia Hill	697910.82	7664230.43	176.57	35	-50	200.1	DD	159	162	3	3.22
KMYD033	Breccia Hill	697845.78	7664198.49	177.03	45	-65	336.6	DD	195	199	4	0.91
including	Breccia Hill	697845.78	7664198.49	177.03	45	-65	336.6	DD	196	198	2	1.37
KMYD033	Breccia Hill	697845.78	7664198.49	177.03	45	-65	336.6	DD	204	209	5	0.61
KMYD033	Breccia Hill	697845.78	7664198.49	177.03	45	-65	336.6	DD	219	220	1	6.55
KMYD033	Breccia Hill	697845.78	7664198.49	177.03	45	-65	336.6	DD	231	234	3	1.31
KMYD035	Breccia Hill	698117.41	7664101.33	177.23	350	-60	352.6	DD	225	228	3	2.02
including	Breccia Hill	698117.41	7664101.33	177.23	350	-60	352.6	DD	225	226	1	4.67
KMYD035	Breccia Hill	698117.41	7664101.33	177.23	350	-60	352.6	DD	233	242	9	1.40
including	Breccia Hill	698117.41	7664101.33	177.23	350	-60	352.6	DD	234	237	3	3.60
KMYD035	Breccia Hill	698117.41	7664101.33	177.23	350	-60	352.6	DD	252	258	6	0.33
KMYD037	Breccia Hill	698182.38	7664175.89	177.30	345	-55	183.2	DD			/s Pending	
KMYD038	Breccia Hill	698127.47	7664121.68	177.34	15	-60	294.8	DD			/s Pending	
KMYD039	Breccia Hill	698184.04	7664175.46	177.29	15	-70	271.8	DD	185	196	11	2.86
including	Breccia Hill	698184.04	7664175.46	177.29	15	-70	271.8	DD	185	193	8	3.67
KMYD040	Breccia Hill	698160.47	7664090.98	177.39	15	-60	336.8	DD		1	/s Pending	
KMYD047	Breccia Hill	698569.56	7664142.75	178.84	0	-60	297.5	DD	185	186	1	1.20
KMYD047	Breccia Hill	698569.56	7664142.75	178.84	0	-60	297.5	DD	191	194	3	1.50
including	Breccia Hill	698569.56	7664142.75	178.84	0	-60	297.5	DD	191	192	1	3.34
KMYD048	Breccia Hill	698608.43	7664176.53	178.94	0	-60	213.7	DD	164	166	2	0.56
KMYD051	Breccia Hill	698672.76	7664092.77	184.99	0	-55	312.7	DD			/s Pending	
KMYD055	Gossan Hill	698816.57	7664165.14	188.26	0	-70	248.9	DD	160	161	1	0.82

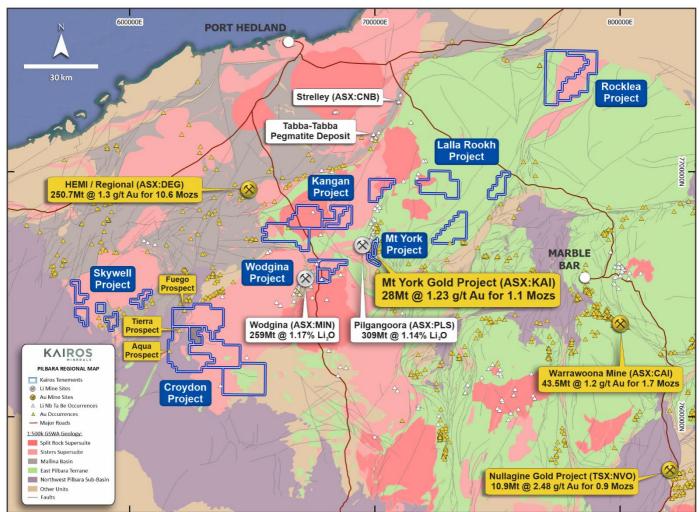

I I - I - ID	D	Easting	Northing	RL	Azi	Dip	HoleDepth	Hole	From	То	Interval	Grade
HoleID	Prospect	MGA94	MGA94	(m)	Degrees	Degrees	(m)	Туре	(m)	(m)	(m)	g/t Au
KMYD055	Gossan Hill	698816.57	7664165.14	188.26	0	-70	248.9	DD	169	172	3	0.55
KMYD055	Gossan Hill	698816.57	7664165.14	188.26	0	-70	248.9	DD	177	188	11	1.78
including	Gossan Hill	698816.57	7664165.14	188.26	0	-70	248.9	DD	184	188	4	2.67
KMYD055	Gossan Hill	698816.57	7664165.14	188.26	0	-70	248.9	DD	200	201	1	2.53
KMYD056	Gossan Hill	698875.42	7664160.67	186.72	0	-60	198.8	DD	150	167	17	0.56
including	Gossan Hill	698875.42	7664160.67	186.72	0	-60	198.8	DD	161	164	3	1.23
KMYD058	Gossan Hill	698946.12	7664171.35	184.98	0	-60	280.2	DD	157	169	12	1.31
including	Gossan Hill	698946.12	7664171.35	184.98	0	-60	280.2	DD	165	167	2	2.50
KMYD059	Gossan Hill	699017.15	7664198.33	187.03	0	-60	225.7	DD	164	167	3	1.71
KMYD059	Gossan Hill	699017.15	7664198.33	187.03	0	-60	225.7	DD	196	202	6	1.42
including	Gossan Hill	699017.15	7664198.33	187.03	0	-60	225.7	DD	199	201	2	2.74
KMYD071	Main Hill	697260.40	7664698.40	173.63	35	-40	264.0	DD		Assay	/s Pending	<u></u>
KMYD098	The Gap	697569.71	7664242.29	179.64	45	-60	441.8	DD		Assay	/s Pending	
KMYD101	Breccia Hill	698473.53	7664086.01	178.82	0	-68	378.1	DD		Assay	/s Pending	
KMYD102	Breccia Hill	698561.57	7664051.01	183.89	0	-60	354.1	DD	295	302	7	0.51
including	Breccia Hill	698561.57	7664051.01	183.89	0	-60	354.1	DD	295	296	1	1.31
KMYD102	Breccia Hill	698561.57	7664051.01	183.89	0	-60	354.1	DD	328	329	1	0.75
KMYD105	Breccia Hill	698905.64	7664102.31	182.12	0	-60	256.6	DD	210	211	1	0.87

Table 1. Significant results from all drill holes at Mt York for the period September – December 2022.

Next Steps

- Reporting of results on remaining 13 Mt York drill holes
- Selection of core samples for density measurements
- Wireframe adjustment for lithology, mineralisation
- Resource estimation, pit optimisation updates
- Mining Lease stakeholder negotiations

Figure 5. Kairos' Gold & Lithium Projects over the central Pilbara regional geology showing the position of the Mt York Project.

About Kairos Minerals

Kairos Minerals (ASX:KAI) owns 100% of the flagship 1.1 Mozs **Mt York Gold Project** that was partially mined by Lynas Gold NL between 1994 and 1998. Kairos has recognised that the resource has significant potential to grow further from its current 1.1 Moz base. Pre-feasibility work will progress rapidly underpinned by the resource expansion work that will collect important information for metallurgical testwork, mining and process engineering to determine viability and optimal pathway to develop a sustainable, long-lived mining project. Current resources at a 0.7 g/t Au cutoff grade are shown in the table below.

	Indicated			Inferred			Total			
Deposit	Tonnes (MT)	Au (g/t)	Ounces (kozs)	Tonnes (MT)	Au (g/t)	Ounces (kozs)	Tonnes (MT)	Au (g/t)	Ounces (kozs)	
Main Trend	11.02	1.26	446	12.26	1.15	452	23.27	1.20	899	
Iron Stirrup	1.18	1.81	69	0.63	1.66	34	1.81	1.76	102	
Old Faithful	1.73	1.19	66	1.19	0.96	38	2.93	1.1	103	
Total	13.93	1.30	581	14.08	1.15	523	28.01	1.23	1,104	

Kairos has recently discovered spodumene-bearing pegmatites adjacent to the Mt York Gold Project and is evaluating their potential to become part of a value-adding lithium project into the future.

Kairos's 100%-owned Roe Hills Project, located 120km east of Kalgoorlie in WA's Eastern Goldfields, comprises an extensive tenement portfolio where the Company's exploration work has confirmed the potential for significant discoveries of high-grade gold, nickel and cobalt mineralization. Kaiors has also discovered a 2,400m long Li-Cs-Rb soil anomaly in an exciting and emerging lithium province that will be drill-tested.

This announcement has been authorised for release by the Board.

Peter Turner Managing Director Zane Lewis
Non Executive Director

For Investor Information please contact:

Paul Armstrong – Read Corporate 0421 619 084

COMPETENT PERSON STATEMENT:

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled and reviewed by Mr Mark Falconer, who is a full-time employee of Kairos Minerals Ltd and who is also a Member of the Australian Institute of Geoscientists (AIG). Mr Falconer has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Falconer has consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The Mineral Resources were first reported in the announcement date 30 August 2022 (Announcement). The Company confirms that it is not aware of any new information or data that materially affects the information included in the Announcement and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Appendix A - JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was undertaken using diamond drilling and reverse circulation (RC) drilling. All drilling and sampling was undertaken using industry standard methods. Diamond drilling depths and run lengths were measured and recorded by the driller and written on core blocks and inserted into the core trays. Rod counts were conducted to verify drill hole and sample depths RC drilling depths were monitored by the driller using 1m depth intervals calibrated and marked on the drilling equipment. Sample lengths were also verified by Kairos personnel through visual assessment of individual sample volumes. Diamond drill core was logged geologically, marked up for sampling, and photographed. Samples were selected on nominal 1m intervals in and around mineralised zones, with variations to interval lengths based on geological boundaries. RC holes were sampled on a 1m basis with samples collected in calico bags from a cyclone-mounted cone splitter located at the drill rig. Sampling was carried out under Kairos Minerals sampling protocols and QAQC procedures. See further details below. The samples are considered representative and appropriate for the methods of drilling used. Diamond core and RC samples were assayed for gold by fire assay at Intertek Genalysis Laboritory in Perth.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling was conducted using a 5 ½ inch bit and face sampling hammer Diamond drilling was conducted using HQ3 diameter (61mm) drilling to fresh rock with NQ2 diameter (51mm) drilling for the remainder of the hole. A number of deeper drillholes consisted of RC pre-collars with NQ2 diameter diamond tails. All NQ drill core was oriented using a Reflex digital orientation tool at the drill site, and

Criteria	JORC Code explanation	Commentary
		then joined and marked up by Kairos field personnel
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill core recovery is measured for each drilling run by the driller and recorded on core blocks inserted into the core trays. These measurements are verified by the geological staff during the mark up and logging process by physical measurement with a tape measure. RC samples were visually assessed for recovery. The majority of RC samples were dry. Some deeper drillholes encountered water and efforts were made by the drillers to minimise the amount of water in the sample and to maximise recovery. Recovery of RC samples is considered good, with some minor sample loss near the very top of some holes outside of mineralisation. RC samples were collected directly from a cone splitter on the drill rig cyclone and are considered representative in nature.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No sample bias is observed. All RC chips and drill core were geologically logged by company geologists using the Kairos Minerals logging scheme. Logging of diamond core and RC chips records colour, lithology, grain size, structure, mineralalogy, alteration, weathering and various other features of the samples. All holes were logged in full. All diamond core was photographed both dry and wet in core trays after logging and prior to cutting and sampling. All RC chips were photographed in labelled chip trays. A total of seven diamond holes were fully logged geotechnically by an external geotechnical consultant in preparation for mining studies.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 NQ and HQ drill core samples were cut in half, with half core samples submitted for analysis and the other half retained on site in core trays. Half core drill samples typically ranged in weight from 2.7kg – 3.6kg. RC samples were sampled using a cone splitter mounted on the drill rig cyclone, with an average 2.5kg to 3.5kg sample collected directly into a numbered calico bag. >95% of

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 samples were collected dry The quality of RC samples was ensured through monitoring of sample volumes and by regular cleaning of the cyclone and cone splitter on the drill rig. All drill core cutting and RC sampling was conducted at the Mt York project site. Samples were prepared at Intertek Genalysis in Perth. Samples were dried, crushed and then pulverised to a pulp with 85% passing <75 µm. A sub-sample of approximately 200g was retained. Sample sizes are considered appropriate for the material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were analysed by Intertek Genalysis in Perth. The analytical method used was a 50g fire assay for gold, followed by an ICP-OES finish with laboratory code FA50/OE04 and a quoted lower detection limit of 0.005ppm Au. The analysis method is considered appropriate for the nature of the material and mineralisation. A 48 element analysis was conducted on RC and diamond samples at a minimum rate of 1:20 samples using Intertek Genalysis method 4A/MS48 involving a four-acid digest and ICP-MS and ICP-OES finish Certified standards and blanks were regularly inserted into the sample sequence at a minimum rate of 1:30 for standards and 1:30 for blanks to assess the accuracy of the analysis method. The laboratory performed regular performance checks through analysis of laboratory standards, repeats, and control blanks. QAQC performance was monitored by Kairos staff with action taken with the laboratory if required. Acceptable levels of accuracy and precision have been established through monitoring and assessment of QAQC performance.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Significant mineralised intersections were checked by the Exploration Manager and validated against the drill core and logging in the case of diamond drilling, and against the logging and RC chips in the case of RC drilling. Additional checks were performed by

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	 other members of the Kairos geology team. No twinned drillholes were completed for this program. All assay and geological data is stored in an electronic database hosted by acQuire and managed by the company's database consultant. Primary laboratory data is emailed directly to the company's database consultant for upload directly into the company database. Results are checked and verified by company geologists. No adjustments have been made to the assay data. Assay intersections are reported on a length-weighted basis.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC collar locations were set out using handheld GPS, with an accuracy of +/-5m in both easting and northing. Diamond and RC colars were surveyed post-drilling with a RTK DGPS system operated by a qualified surveyor supplied by an external survey company, with expected accuracies of +/- 20mm horizontally and +/- 30mm vertically. Downhole surveys were completed on all drill holes using a Reflex Sprint IQ Gyroscope survey instrument with measurements recorded every 5m for RC holes and 10m for diamond holes. All location data is recorded in GDA94 MGA Zone 50. Topographic control is through a DTM generated through stereoscopic photogrammetry of 5cm resolution aerial imagery. The accuracy of the DTM is estimated as better than 0.5m in elevation.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing ranges from 100m x 100m for extentional exploration drillholes down-dip and along strike, to 50m x 50m and 50m x 100m for infill and local extentional holes. The data spacing and distribution is considered appropriate and sufficient to establish the geological and grade continuity required for the anticipated estimation procedures and classifications based on previous drilling, resource modelling and geological work. No compositing of samples has been applied.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was oriented approximately perpendicular to the strike and dip of mineralisation. Drill holes were angled between -50° and -65° to provide good intersection angles with mineralisation that dips between -40° to -70°. No biases have been identified based on drilling angles and known structures. The drill orientation is considered appropriate and representative.
Sample security	The measures taken to ensure sample security.	 All samples were collected in the field at the project site in number-coded calico bags and placed within secure, labelled polyweave bags by company field personnel. All samples were delivered directly to a freight contractor for secure transport to Intertek Genalysis in Perth for final analysis.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 QAQC data was reviewed internally. No external QAQC reviews or audits have been conducted.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Mt York project comprises 12 Prospecting Licences P45/2987 - 2998 inclusive. Kairos Minerals Limited owns 100% of the 12 Prospecting Licences that define the Mt York Gold Project through its wholly- owned subsidiary Mount York Operations Pty Ltd. The security of the tenements is in good standing. Kairos Minerals is in the process of converting the Prospecting Licences into Mining Leases, and has submitted Mining Lease applications over the existing Prospecting Licences to DMIRS (as reported to the ASX on 31/01/2023 - 'Quarterly Report for the Period Ending 31 December 2022'). The project is located on Wallareenya and Strelley Pastoral Co Leases. Kairos is not aware of any existing impediments nor of any potential impediments which may impact ongoing exploration and development activities at the project site.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Significant past work has been carried out by other parties including open pit mining of previously defined gold resources. During the early to mid-1970's, the Lynas Find project area was part of a large area held and explored for volcanogenic base metal deposits, initially by McIntyre Mines Pty Ltd, and then by Esso Minerals. Esso completed some induced polarization and ground magnetic geophysical surveys, and some diamond drilling over the area including the Main Trend at Mt York. The Main Trend at Mt York was discovered by Carpentaria Exploration Company Pty Ltd in 1986. Lynas Gold NL acquired the project in the early 1990's and mined a number of deposits as a successful open pit operation by that company between 1994 - 1998. Other companies to have explored the area include Austamax, MIM and Trafford Resources. The Old Faithful area was initially drilled by AMAX with one hole to test geochemical high and small workings. Lynas followed up with several programs of RAB, RC and diamond drilling from 1987 through to 1996. Significant historical Au exploration including, surface geochemical sampling, airborne and ground electromagnetic geophysical surveys, RAB, AC, RC, and DD drilling. This is acknowledged in past ASX announcements and Company reports.
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology The Pilbara Gold Project lies within the Pilgangoora Greenstone Belt of the Archaean Pilbara Craton. The Pilbara Craton is composed of greenstone and sediment units which have been deformed by tight isoclinal folds during the intrusion of diapiric granites. The Pilgangoora Greenstone Belt is dominated by the Pilgangoora Syncline, which contains a sequence of steep dipping, inward younging volcanosedimentary rocks belonging to the two lower groups of the Pilbara Supergroup, the Warrawoona, and Gorge Creek Groups.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 Local Geology The Mt York main trend geology comprises (from NE to SW) – felsic volcanics and cherts, mafic-ultramafic volcanics and amphibolite, banded iron formation (BIF), and fine to coarse-grained sediments. The sequence has been metamorphosed to amphibolite facies and has been broadly folded. Gold mineraliation is hosted primarily within the BIF sequence, and is associated with weak to strongly disseminated arsenopyrite and disseminated to massive pyrrhotite associated with visible folding and deformation of the BIF layering All drill hole location, orientation, hole length and interception depth and length information material to the understanding of the exploration results is provided in Table 1 and figures included within the
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 body of this announcement. Information from historic holes drilled by Kairos Minerals at Mt York can be found in previous ASX releases. No drill hole information from the reported program was excluded from this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Results are reported as down hole length weighted averages using a 0.3g/t gold minimum cutoff grade. Reported intercepts may include a maximum of 4m of internal dilution below the 0.3g/t minimum cut off grade. No top cuts have been applied to the reporting of the assay results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	 All mineralisation widths for exploration holes are reported as down hole lengths. Where drilling is not perpendicular to the strike and dip of the mineralisation the true widths are less than down hole widths.

Criteria	JORC Code explanation	Commentary
Diagrams	 lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures and Tables provided in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration results received from the drill program at the time of data compilation for this announcement have been reported, including drill holes with low grades or no significant intercepts. The information reported in considered fair, balanced, and provided in context.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Groundwater and detailed geotechnical studies have commenced in preparation for mining studies. Metallurgical samples will be selected once all assay results have been returned from the program.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mineralisation at Mt York remains open at depth and along strike and additional RC and diamond drill holes are being planned to extend the known mineralisation. Diagrams in the body of this announcement highlight the multiple trends of high-grade or wider zones of mineralisation that will be prioritised for further drilling.